留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

历史渔获量统计偏差对资源评估的影响:以西大西洋蓝鳍金枪鱼为例

冯佶 朱江峰 张帆 李亚楠 耿喆

冯佶, 朱江峰, 张帆, 李亚楠, 耿喆. 历史渔获量统计偏差对资源评估的影响:以西大西洋蓝鳍金枪鱼为例[J]. 南方水产科学, 2023, 19(1): 1-11. doi: 10.12131/20220037
引用本文: 冯佶, 朱江峰, 张帆, 李亚楠, 耿喆. 历史渔获量统计偏差对资源评估的影响:以西大西洋蓝鳍金枪鱼为例[J]. 南方水产科学, 2023, 19(1): 1-11. doi: 10.12131/20220037
FENG Ji, ZHU Jiangfeng, ZHANG Fan, LI Yanan, GENG Zhe. Influence of statistical deviation of historical catch on stock assessment: a case study of western Atlantic Thunnus thynnus[J]. South China Fisheries Science, 2023, 19(1): 1-11. doi: 10.12131/20220037
Citation: FENG Ji, ZHU Jiangfeng, ZHANG Fan, LI Yanan, GENG Zhe. Influence of statistical deviation of historical catch on stock assessment: a case study of western Atlantic Thunnus thynnus[J]. South China Fisheries Science, 2023, 19(1): 1-11. doi: 10.12131/20220037

历史渔获量统计偏差对资源评估的影响:以西大西洋蓝鳍金枪鱼为例

doi: 10.12131/20220037
基金项目: 国家自然科学基金项目 (41676120, 32002393)
详细信息
    作者简介:

    冯佶:冯 佶 (1993—),男,博士研究生,研究方向为渔业资源评估。E-mail: 276828719@qq.com

    通讯作者:

    朱江峰 (1978—),男,教授,博士,研究方向为渔业资源评估与种群生态学。E-mail: jfzhu@shou.edu.cn

  • 中图分类号: S 932

Influence of statistical deviation of historical catch on stock assessment: a case study of western Atlantic Thunnus thynnus

  • 摘要: 渔获量数据是资源评估所需的最基本数据,同时也最易出现报告和统计误差。误报问题是导致历史渔获量偏差的原因之一,普遍存在于全球各类渔业资源评估中。根据历史数据,分析渔获量偏差对资源评估的影响有助于建立合理的管理目标,促进渔业资源可持续利用。以西大西洋蓝鳍金枪鱼 (Thunnus thynnus) 为例,运用年龄结构模型 (Age-Structured Assessment Program, ASAP),分析历史渔获量统计偏差对当前资源状态判定的影响。结果表明,捕捞死亡系数 (Fishing mortality, F) 和产卵亲体生物量 (Spawning stock biomass, SSB) 的估计值会随着调整后的实际渔获量同向变化;随着统计偏差幅度增大,F和SSB相关生物学参考点的相对偏差率也随之增大。所有8种假定的渔获量统计偏差情况下,F相关参考点的相对偏差率均小于1%;当渔获量统计偏差为−20%时,SSB相关参考点的最大相对偏差率约为4%。历史渔获量统计偏差对SSB相关参考点的影响相比F相关参考点更为明显。根据该研究结果,建议加强渔获量数据质量问题的来源分析,从而进行历史渔业数据的科学重建,以提高评估结果的精确性与可信度。
  • 图  1  评估模型假设的西大西洋蓝鳍金枪鱼自然死亡系数与成熟度

    Figure  1.  Natural mortality and maturity at age as assumed in assessment models of T. thynnus

    图  2  基准模型年渔获量观测值与预测值

    Figure  2.  Observed and predicted values of annual catch for base case model

    图  3  基准模型丰度指数观测值与预测值

    Figure  3.  Observed and predicted values of abundance index for base case model

    图  4  测试 1—测试 3的年渔获量残差变化

    Figure  4.  Residual of annual total catch of Test 1 to Test 3

    图  5  测试 1—测试 3的丰度指数US_RR_66_114残差变化

    Figure  5.  Residual of abundance index US_RR_66_114 of Test 1 to Test 3

    图  6  基准模型有效样本量输入值和估算值

    Figure  6.  Input and estimated effective sample size for base case model

    图  7  不同渔获量统计偏差的捕捞死亡系数

    Figure  7.  Fishing mortality with different statistical deviation of catch for T. thynnus

    图  8  不同渔获量统计偏差的产卵亲体生物量

    Figure  8.  Spawning stock biomass with different statistical deviation of catch for T. thynnus

    图  9  不同测试的生物学参考点的相对偏差率

    Figure  9.  Relative difference of biological reference points with different test results

    表  1  西大西洋蓝鳍金枪鱼评估模型使用的丰度指数

    Table  1.   Abundance index used in assessment models for T. thynnus

    丰度指数名称
    Name of abundance index
    时间跨度
    Time period/年
    描述
    Description
    US_RR_66_114 1993—2015 美国竿钓指数资料 (66~114 cm 体长组)
    US_RR_115_144 1993—2015 美国竿钓指数资料 (115~144 cm 体长组)
    US_RR<145 1980—1983、1985—1992 美国竿钓指数资料 (<145 cm 体长组)
    US_RR>195 1983—1992 美国竿钓指数资料 (>195 cm 体长组)
    US_RR>177 1993—2015 美国竿钓指数资料 (>177 cm 体长组)
    JLL_AREA_2 1976—2009 日本延绳钓指数资料 
    JLL_RECENT 2010—2015 日本延绳钓指数资料
    GOM_PLL 1992—2015 墨西哥湾 (Gulf of Mexico, GOM) 延绳钓指数资料
    CAN_Combined_RR 1984—2015 加拿大竿钓综合指数资料
    CAN_GSL_Acoustic 1994—2015 加拿大声学调查
    LARVAL 1977—1978、1981—1984、1986—2015 幼鱼调查
    下载: 导出CSV

    表  2  测试场景假设及敏感性分析

    Table  2.   Test scenarios and sensitivity analysis models for T. thynnus

    测试
    Test
    渔获量统计偏差
    Statistical deviation of catch
    测试 1 Test 1无偏差
    测试 2 Test 2−20% (1950—1969 年)、0% (1970—2015 年)
    测试 3 Test 3−15% (1950—1969 年)、0% (1970—2015 年)
    测试 4 Test 4−10% (1950—1969 年)、0% (1970—2015 年)
    测试 5 Test 5−5% (1950—1969 年)、0% (1970—2015 年)
    测试 6 Test 65% (1950—1969 年)、0% (1970—2015 年)
    测试 7 Test 710% (1950—1969 年)、0% (1970—2015 年)
    测试 8 Test 815% (1950—1969 年)、0% (1970—2015 年)
    测试 9 Test 920% (1950—1969 年)、0% (1970—2015 年)
    下载: 导出CSV

    表  3  各测试的评估结果及其相对偏差率

    Table  3.   Stock assessment results and relative differences for each test

    测试
    Test
    渔获量统计偏差
    Statistical deviation of catch
    目标函数
    Objective function
    生物学参考点及相对偏差率
    Biological reference points and relative differences
    MSY/tRD/%FMSYRD/%Fcur/FMSYRD/%
    测试 1 Test 1 无偏差 2 576.88 4 861.48 0.00 0.045 861 0.000 0.751 3 0.00
    测试 2 Test 2 −20% 2 565.39 5 025.08 3.37 0.045 872 0.024 0.756 1 0.64
    测试 3 Test 3 −15% 2 568.40 4 974.02 2.31 0.045 872 0.023 0.754 7 0.45
    测试 4 Test 4 −10% 2 571.32 4 930.35 1.42 0.045 867 0.015 0.753 5 0.29
    测试 5 Test 5 −5% 2 574.14 4 893.21 0.65 0.045 862 0.002 0.752 4 0.15
    测试 6 Test 6 5% 2 579.55 4 828.90 −0.67 0.045 859 −0.002 0.750 2 −0.15
    测试 7 Test 7 10% 2 582.14 4 800.81 −1.25 0.045 853 −0.017 0.749 3 −0.27
    测试 8 Test 8 15% 2 585.16 4 772.35 −1.83 0.045 852 −0.018 0.748 1 −0.43
    测试 9 Test 9 20% 2 587.12 4 756.96 −2.15 0.045 848 −0.028 0.747 4 −0.52
    测试
    Test
    渔获量统计偏差
    Statistical deviation of catch
    目标函数
    Objective function
    生物学参考点及相对偏差率
    Biological reference points and relative differences
    SSBMSY/t RD/% SSBcur/SSBMSY RD/% SSBcur/SSB0 RD/%
    测试 1 Test 1 无偏差 2 576.88 99 681.1 0.00 0.510 3 0.00 0.193 1 0.000
    测试 2 Test 2 −20% 2 565.39 102 951.0 3.28 0.490 5 −3.88 0.185 6 −0.039
    测试 3 Test 3 −15% 2 568.40 101 920.0 2.25 0.496 5 −2.70 0.187 9 −0.027
    测试 4 Test 4 −10% 2 571.32 101 051.0 1.37 0.501 7 −1.69 0.189 9 −0.017
    测试 5 Test 5 −5% 2 574.14 100 316.0 0.64 0.506 3 −0.78 0.191 6 −0.008
    测试 6 Test 6 5% 2 579.55 99 028.4 −0.65 0.514 5 0.82 0.194 7 0.008
    测试 7 Test 7 10% 2 582.14 98 479.1 −1.21 0.518 2 1.55 0.196 1 0.016
    测试 8 Test 8 15% 2 585.16 97 910.1 −1.78 0.522 1 2.31 0.197 6 0.023
    测试 9 Test 9 20% 2 587.12 97 611.8 −2.08 0.524 3 2.74 0.198 4 0.027
    下载: 导出CSV
  • [1] ROUSSEAU D M. Is there such a thing as "evidence-based management"?[J]. Acad Manage Rev, 2006, 31(2): 256-269. doi: 10.5465/amr.2006.20208679
    [2] RUDD M B, BRANCH T A. Does unreported catch lead to overfishing?[J]. Fish Fish, 2017, 18(2): 313-323. doi: 10.1111/faf.12181
    [3] CHEN Y, CHEN L, STERGIOU K I. Impacts of data quantity on fisheries stock assessment[J]. Aquat Sci, 2003, 65(1): 92-98. doi: 10.1007/s000270300008
    [4] CHEN Y, RAJAKARUNA H. Quality and quantity of fisheries information in stock assessment[C]//American Fisheries Society Symposium. Bethesda: American Fisheries Society, 2003: 411-424.
    [5] DERRICK B, KHALFALLAH M, RELANO V, et al. Updating to 2018 the 1950−2010 Marine Catch Reconstructions of the Sea Around US: Part I-Africa, Antarctica, Europe and the North Atlantic[R] Vancouver: Fisheries Centre Research Reports, 2020, 28(5): 7-8.
    [6] BELHABIB D, KOUTOB V, SALL A, et al. Fisheries catch misreporting and its implications: the case of Senegal[J]. Fish Res, 2014, 151: 1-11. doi: 10.1016/j.fishres.2013.12.006
    [7] PAULY D, ZELLER D. Catch reconstructions reveal that global marine fisheries catches are higher than reported and declining[J]. Nat Commun, 2016, 7(1): 1-9.
    [8] FOSSILE T, FERREIRA J, da ROCHA BANDEIRA D, et al. Pre-Columbian fisheries catch reconstruction for a subtropical estuary in South America[J]. Fish Fish, 2019, 20(6): 1124-1137. doi: 10.1111/faf.12401
    [9] TESFAMICHAEL D, PAULY D. Catch reconstruction for the Red Sea large marine ecosystem by countries (1950-2010)[R]. Vancouver: Fisheries Centre Research Report, 2012, 20(1): 244.
    [10] MOAZZAM M, AYUB S. Catch reconstruction of neritic tuna landings of Pakistan based on data collected by WWF-Pakistan's crew based Observer Programme[R]. Victoria Mahé: Seventh Session of IOTC Working Party on Neritic Tuna (WPNT07), 2017: 10-13.
    [11] van BEVEREN E, DUPLISEA D E, MARENTETTE J R, et al. An example of how catch uncertainty hinders effective stock management and rebuilding[J]. Fish Res, 2020, 224: 105473. doi: 10.1016/j.fishres.2019.105473
    [12] 吕翔, 黄硕琳. 大西洋蓝鳍金枪鱼资源开发与养护问题分析[J]. 上海海洋大学学报, 2016, 25(6): 936-944. doi: 10.12024/jsou.20160301717
    [13] FROMENTIN J M, POWERS J E. Atlantic bluefin tuna: population dynamics, ecology, fisheries and management[J]. Fish Fish, 2005, 6(4): 281-306. doi: 10.1111/j.1467-2979.2005.00197.x
    [14] 李亚楠, 戴小杰, 朱江峰, 等. 渔获量不确定性对印度洋大眼金枪鱼资源评估的影响[J]. 渔业科学进展, 2018, 39(5): 1-9. doi: 10.19663/j.issn2095-9869.20170627001
    [15] ANONYMOUS. Report of the 2017 ICCAT bluefin tuna data preparatory meeting[R]. Madrid: ICCAT Col Vol Sci Pap, 2018, 74(6): 2268-2731.
    [16] ANONYMOUS. Report of the 2017 ICCAT bluefin stock assessment meeting[R]. Madrid: ICCAT Col Vol Sci Pap, 2018, 74(6): 2372-2535.
    [17] LAURETTA M, KIMOTO A, PORCH C E, et al. A preliminary assessment of the status of the western Atlantic bluefin tuna stock (1970−2013)[R]. ICCAT Col Vol Sci Pap, 2015, 71(4): 1545-1603.
    [18] RODRIGUEZ-MARIN E, ORTIZ M, ORTIZ de URBINA J M, et al. Atlantic bluefin tuna (Thunnus thynnus) biometrics and condition[J]. PLoS One, 2015, 10(10): e0141478. doi: 10.1371/journal.pone.0141478
    [19] WALTER J, SHARMA R, ORTIZ M. Western Atlantic bluefin tuna stock assessment 1950−2015 using Stock Synthesis[R]. Madrid: ICCAT Col Vol Sci Pap, 2018, 74(6): 3305-3404.
    [20] BOENISH R, CHEN Y. Re-evaluating Atlantic cod mortality including lobster bycatch: where could we be today?[J]. Can J Fish Aquat Sci, 2020, 77(6): 1049-1058. doi: 10.1139/cjfas-2019-0313
    [21] 朱江峰, 戴小杰, 官文江. 印度洋长鳍金枪鱼资源评估[J]. 渔业科学进展, 2014, 35(1): 1-8. doi: 10.3969/j.issn.1000-7075.2014.01.001
    [22] KURIYAMA P T, ZWOLINSKI J P, HILL K T, et al. Assessment of the Pacific sardine resource in 2020 for US management in 2020−2021[R]. La Jolla: Department of Commerce, NOAA Technical Memorandum NMFS-SWFSC-628, 2020: 191.
    [23] 官文江, 田思泉, 朱江峰, 等. 渔业资源评估模型的研究现状与展望[J]. 中国水产科学, 2013, 20(5): 1112-1120.
    [24] NOAA Fisheries Toolbox. Technical documentation for ASAP version 3.0[Z]. Washington: NOAA, 2013: 2-10.
    [25] LEGAULT C M, RESTREPO V R. A flexible forward age-structured assessment program[R]. Madrid: ICCAT Col Vol Sci Pap, 1998, 49: 246-253.
    [26] ICCAT. Report of the 2004 ICCAT data exploratory meeting for east Atlantic and Mediterranean bluefin tuna[R]. Madrid: ICCAT Col Vol Sci Pap, 2005, 58(2): 662-699.
    [27] SAGARESE S R, HARFORD W J, WALTER J F, et al. Lessons learned from data-limited evaluations of data-rich reef fish species in the Gulf of Mexico: implications for providing fisheries management advice for data-poor stocks[J]. Can J Fish Aquat Sci, 2019, 76(9): 1624-1639. doi: 10.1139/cjfas-2017-0482
    [28] ARNOLD L M, HEPPELL S S. Testing the robustness of data-poor assessment methods to uncertainty in catch and biology: a retrospective approach[J]. ICES J Mar Sci, 2015, 72(1): 243-250. doi: 10.1093/icesjms/fsu077
    [29] WISE J P. Probable under estimates and misreporting of Atlantic small tuna catches, with suggestions for improvement[R]. Madrid: ICCAT Sci Pap, 1986, 25: 324-332.
    [30] PASCOE S. Bycatch management and the economics of discarding[M]. Rome: FAO, 1997: 13.
    [31] POLACHECK T. Assessment of IUU fishing for southern bluefin tuna[J]. Mar Policy, 2012, 36(5): 1150-1165. doi: 10.1016/j.marpol.2012.02.019
    [32] 童玉和, 陈新军, 田思泉, 等. 渔业管理中生物学参考点的理论及其应用[J]. 水产学报, 2010, 34(7): 1040-1050.
    [33] 张魁, 刘群, 廖宝超, 等. 渔业数据失真对两种非平衡剩余产量模型评估结果的影响比较[J]. 水产学报, 2018, 42(9): 1378-1389.
    [34] PRAGER M H. A suite of extensions to a nonequilibrium surplus-production model[J]. Fish Bull, 1994, 92: 374-389.
    [35] KELL L T, FROMENTIN J M. Evaluation of the robustness of maximum sustainable yield based management strategies to variations in carrying capacity or migration pattern of Atlantic bluefin tuna (Thunnus thynnus)[J]. Can J Fish Aquat Sci, 2007, 64(5): 837-847. doi: 10.1139/f07-051
    [36] ICCAT. Report of the 2002 Atlantic bluefin tuna stock assessment session[R]. Madrid: ICCAT Col Vol Sci Pap, 2003, 55: 710-937.
    [37] ICCAT. Recommendation by ICCAT on penalties applicable in case of non-fulfilment of reporting obligations[R]. Madrid: ICCAT, 2011, 11(15): 263.
    [38] ICCAT. Recommendation by ICCAT for an interim conservation and management plan for western Atlantic bluefin tuna[R]. Madrid: ICCAT, 2017, 17(6): 104-109.
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  116
  • HTML全文浏览量:  42
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-21
  • 修回日期:  2022-04-18
  • 录用日期:  2022-04-18
  • 网络出版日期:  2022-10-21
  • 刊出日期:  2023-02-03

目录

    /

    返回文章
    返回