Influence of statistical deviation of historical catch on stock assessment: a case study of western Atlantic Thunnus thynnus
-
摘要: 渔获量数据是资源评估所需的最基本数据,同时也最易出现报告和统计误差。误报问题是导致历史渔获量偏差的原因之一,普遍存在于全球各类渔业资源评估中。根据历史数据,分析渔获量偏差对资源评估的影响有助于建立合理的管理目标,促进渔业资源可持续利用。以西大西洋蓝鳍金枪鱼 (Thunnus thynnus) 为例,运用年龄结构模型 (Age-Structured Assessment Program, ASAP),分析历史渔获量统计偏差对当前资源状态判定的影响。结果表明,捕捞死亡系数 (Fishing mortality, F) 和产卵亲体生物量 (Spawning stock biomass, SSB) 的估计值会随着调整后的实际渔获量同向变化;随着统计偏差幅度增大,F和SSB相关生物学参考点的相对偏差率也随之增大。所有8种假定的渔获量统计偏差情况下,F相关参考点的相对偏差率均小于1%;当渔获量统计偏差为−20%时,SSB相关参考点的最大相对偏差率约为4%。历史渔获量统计偏差对SSB相关参考点的影响相比F相关参考点更为明显。根据该研究结果,建议加强渔获量数据质量问题的来源分析,从而进行历史渔业数据的科学重建,以提高评估结果的精确性与可信度。Abstract: Catch data, which is the most basic data for stock assessment, is also most likely to cause reporting and statistical errors. Misreporting is one of the causes for statistical deviation of historical catch, which is currently prevalent in all types of fisheries worldwide. Analyzing the influence of statistical deviation of historical catch on stock assessment based on historical data helps to establish reasonable management objectives, and promote sustainable utilization of fishery resources. In this study, we selected western Atlantic bluefin tuna (Thunnus thynnus) as an example to evaluate the influence of statistical deviation of historical catch on its stock assessment. We carried out a stock assessment by using Age-Structured Assessment Program (Age-Structured Assessment Program, ASAP), and investigated the effects of catch information inaccuracy on the assessment results by setting different levels of statistical deviation of historical catch. The results indicate that the estimated values of fishing mortality (F) and spawning stock biomass (SSB) changed in the same direction with the adjusted catch. With the increase of statistical deviation of catch, the relative difference of biological reference points also increased. The relative deviation rate of F-related biological reference points was less than 1% under all eight assumed statistical deviations of catch. When the statistical deviation of the historical catch was assumed as −20%, the maximum relative difference of SSB-related biological reference points was about 4%. The statistical deviation of catch had a more obvious impact on SSB-related biological reference points than F-related biological reference points. In conclusion, it is suggested to strengthen the source analysis of catch data quality issues, so that the scientific reconstruction of historical fishery data can be conducted to improve the accuracy and reliability of the stock assessment results.
-
Key words:
- Thunnus thynnus /
- Stock assessment /
- Catch /
- Age-Structured Assessment Program /
- Western Atlantic Ocean
-
表 1 西大西洋蓝鳍金枪鱼评估模型使用的丰度指数
Table 1. Abundance index used in assessment models for T. thynnus
丰度指数名称
Name of abundance index时间跨度
Time period/年描述
DescriptionUS_RR_66_114 1993—2015 美国竿钓指数资料 (66~114 cm 体长组) US_RR_115_144 1993—2015 美国竿钓指数资料 (115~144 cm 体长组) US_RR<145 1980—1983、1985—1992 美国竿钓指数资料 (<145 cm 体长组) US_RR>195 1983—1992 美国竿钓指数资料 (>195 cm 体长组) US_RR>177 1993—2015 美国竿钓指数资料 (>177 cm 体长组) JLL_AREA_2 1976—2009 日本延绳钓指数资料 JLL_RECENT 2010—2015 日本延绳钓指数资料 GOM_PLL 1992—2015 墨西哥湾 (Gulf of Mexico, GOM) 延绳钓指数资料 CAN_Combined_RR 1984—2015 加拿大竿钓综合指数资料 CAN_GSL_Acoustic 1994—2015 加拿大声学调查 LARVAL 1977—1978、1981—1984、1986—2015 幼鱼调查 表 2 测试场景假设及敏感性分析
Table 2. Test scenarios and sensitivity analysis models for T. thynnus
测试
Test渔获量统计偏差
Statistical deviation of catch测试 1 Test 1 无偏差 测试 2 Test 2 −20% (1950—1969 年)、0% (1970—2015 年) 测试 3 Test 3 −15% (1950—1969 年)、0% (1970—2015 年) 测试 4 Test 4 −10% (1950—1969 年)、0% (1970—2015 年) 测试 5 Test 5 −5% (1950—1969 年)、0% (1970—2015 年) 测试 6 Test 6 5% (1950—1969 年)、0% (1970—2015 年) 测试 7 Test 7 10% (1950—1969 年)、0% (1970—2015 年) 测试 8 Test 8 15% (1950—1969 年)、0% (1970—2015 年) 测试 9 Test 9 20% (1950—1969 年)、0% (1970—2015 年) 表 3 各测试的评估结果及其相对偏差率
Table 3. Stock assessment results and relative differences for each test
测试
Test渔获量统计偏差
Statistical deviation of catch目标函数
Objective function生物学参考点及相对偏差率
Biological reference points and relative differencesMSY/t RD/% FMSY RD/% Fcur/FMSY RD/% 测试 1 Test 1 无偏差 2 576.88 4 861.48 0.00 0.045 861 0.000 0.751 3 0.00 测试 2 Test 2 −20% 2 565.39 5 025.08 3.37 0.045 872 0.024 0.756 1 0.64 测试 3 Test 3 −15% 2 568.40 4 974.02 2.31 0.045 872 0.023 0.754 7 0.45 测试 4 Test 4 −10% 2 571.32 4 930.35 1.42 0.045 867 0.015 0.753 5 0.29 测试 5 Test 5 −5% 2 574.14 4 893.21 0.65 0.045 862 0.002 0.752 4 0.15 测试 6 Test 6 5% 2 579.55 4 828.90 −0.67 0.045 859 −0.002 0.750 2 −0.15 测试 7 Test 7 10% 2 582.14 4 800.81 −1.25 0.045 853 −0.017 0.749 3 −0.27 测试 8 Test 8 15% 2 585.16 4 772.35 −1.83 0.045 852 −0.018 0.748 1 −0.43 测试 9 Test 9 20% 2 587.12 4 756.96 −2.15 0.045 848 −0.028 0.747 4 −0.52 测试
Test渔获量统计偏差
Statistical deviation of catch目标函数
Objective function生物学参考点及相对偏差率
Biological reference points and relative differencesSSBMSY/t RD/% SSBcur/SSBMSY RD/% SSBcur/SSB0 RD/% 测试 1 Test 1 无偏差 2 576.88 99 681.1 0.00 0.510 3 0.00 0.193 1 0.000 测试 2 Test 2 −20% 2 565.39 102 951.0 3.28 0.490 5 −3.88 0.185 6 −0.039 测试 3 Test 3 −15% 2 568.40 101 920.0 2.25 0.496 5 −2.70 0.187 9 −0.027 测试 4 Test 4 −10% 2 571.32 101 051.0 1.37 0.501 7 −1.69 0.189 9 −0.017 测试 5 Test 5 −5% 2 574.14 100 316.0 0.64 0.506 3 −0.78 0.191 6 −0.008 测试 6 Test 6 5% 2 579.55 99 028.4 −0.65 0.514 5 0.82 0.194 7 0.008 测试 7 Test 7 10% 2 582.14 98 479.1 −1.21 0.518 2 1.55 0.196 1 0.016 测试 8 Test 8 15% 2 585.16 97 910.1 −1.78 0.522 1 2.31 0.197 6 0.023 测试 9 Test 9 20% 2 587.12 97 611.8 −2.08 0.524 3 2.74 0.198 4 0.027 -
[1] ROUSSEAU D M. Is there such a thing as "evidence-based management"?[J]. Acad Manage Rev, 2006, 31(2): 256-269. doi: 10.5465/amr.2006.20208679 [2] RUDD M B, BRANCH T A. Does unreported catch lead to overfishing?[J]. Fish Fish, 2017, 18(2): 313-323. doi: 10.1111/faf.12181 [3] CHEN Y, CHEN L, STERGIOU K I. Impacts of data quantity on fisheries stock assessment[J]. Aquat Sci, 2003, 65(1): 92-98. doi: 10.1007/s000270300008 [4] CHEN Y, RAJAKARUNA H. Quality and quantity of fisheries information in stock assessment[C]//American Fisheries Society Symposium. Bethesda: American Fisheries Society, 2003: 411-424. [5] DERRICK B, KHALFALLAH M, RELANO V, et al. Updating to 2018 the 1950−2010 Marine Catch Reconstructions of the Sea Around US: Part I-Africa, Antarctica, Europe and the North Atlantic[R] Vancouver: Fisheries Centre Research Reports, 2020, 28(5): 7-8. [6] BELHABIB D, KOUTOB V, SALL A, et al. Fisheries catch misreporting and its implications: the case of Senegal[J]. Fish Res, 2014, 151: 1-11. doi: 10.1016/j.fishres.2013.12.006 [7] PAULY D, ZELLER D. Catch reconstructions reveal that global marine fisheries catches are higher than reported and declining[J]. Nat Commun, 2016, 7(1): 1-9. [8] FOSSILE T, FERREIRA J, da ROCHA BANDEIRA D, et al. Pre-Columbian fisheries catch reconstruction for a subtropical estuary in South America[J]. Fish Fish, 2019, 20(6): 1124-1137. doi: 10.1111/faf.12401 [9] TESFAMICHAEL D, PAULY D. Catch reconstruction for the Red Sea large marine ecosystem by countries (1950-2010)[R]. Vancouver: Fisheries Centre Research Report, 2012, 20(1): 244. [10] MOAZZAM M, AYUB S. Catch reconstruction of neritic tuna landings of Pakistan based on data collected by WWF-Pakistan's crew based Observer Programme[R]. Victoria Mahé: Seventh Session of IOTC Working Party on Neritic Tuna (WPNT07), 2017: 10-13. [11] van BEVEREN E, DUPLISEA D E, MARENTETTE J R, et al. An example of how catch uncertainty hinders effective stock management and rebuilding[J]. Fish Res, 2020, 224: 105473. doi: 10.1016/j.fishres.2019.105473 [12] 吕翔, 黄硕琳. 大西洋蓝鳍金枪鱼资源开发与养护问题分析[J]. 上海海洋大学学报, 2016, 25(6): 936-944. doi: 10.12024/jsou.20160301717 [13] FROMENTIN J M, POWERS J E. Atlantic bluefin tuna: population dynamics, ecology, fisheries and management[J]. Fish Fish, 2005, 6(4): 281-306. doi: 10.1111/j.1467-2979.2005.00197.x [14] 李亚楠, 戴小杰, 朱江峰, 等. 渔获量不确定性对印度洋大眼金枪鱼资源评估的影响[J]. 渔业科学进展, 2018, 39(5): 1-9. doi: 10.19663/j.issn2095-9869.20170627001 [15] ANONYMOUS. Report of the 2017 ICCAT bluefin tuna data preparatory meeting[R]. Madrid: ICCAT Col Vol Sci Pap, 2018, 74(6): 2268-2731. [16] ANONYMOUS. Report of the 2017 ICCAT bluefin stock assessment meeting[R]. Madrid: ICCAT Col Vol Sci Pap, 2018, 74(6): 2372-2535. [17] LAURETTA M, KIMOTO A, PORCH C E, et al. A preliminary assessment of the status of the western Atlantic bluefin tuna stock (1970−2013)[R]. ICCAT Col Vol Sci Pap, 2015, 71(4): 1545-1603. [18] RODRIGUEZ-MARIN E, ORTIZ M, ORTIZ de URBINA J M, et al. Atlantic bluefin tuna (Thunnus thynnus) biometrics and condition[J]. PLoS One, 2015, 10(10): e0141478. doi: 10.1371/journal.pone.0141478 [19] WALTER J, SHARMA R, ORTIZ M. Western Atlantic bluefin tuna stock assessment 1950−2015 using Stock Synthesis[R]. Madrid: ICCAT Col Vol Sci Pap, 2018, 74(6): 3305-3404. [20] BOENISH R, CHEN Y. Re-evaluating Atlantic cod mortality including lobster bycatch: where could we be today?[J]. Can J Fish Aquat Sci, 2020, 77(6): 1049-1058. doi: 10.1139/cjfas-2019-0313 [21] 朱江峰, 戴小杰, 官文江. 印度洋长鳍金枪鱼资源评估[J]. 渔业科学进展, 2014, 35(1): 1-8. doi: 10.3969/j.issn.1000-7075.2014.01.001 [22] KURIYAMA P T, ZWOLINSKI J P, HILL K T, et al. Assessment of the Pacific sardine resource in 2020 for US management in 2020−2021[R]. La Jolla: Department of Commerce, NOAA Technical Memorandum NMFS-SWFSC-628, 2020: 191. [23] 官文江, 田思泉, 朱江峰, 等. 渔业资源评估模型的研究现状与展望[J]. 中国水产科学, 2013, 20(5): 1112-1120. [24] NOAA Fisheries Toolbox. Technical documentation for ASAP version 3.0[Z]. Washington: NOAA, 2013: 2-10. [25] LEGAULT C M, RESTREPO V R. A flexible forward age-structured assessment program[R]. Madrid: ICCAT Col Vol Sci Pap, 1998, 49: 246-253. [26] ICCAT. Report of the 2004 ICCAT data exploratory meeting for east Atlantic and Mediterranean bluefin tuna[R]. Madrid: ICCAT Col Vol Sci Pap, 2005, 58(2): 662-699. [27] SAGARESE S R, HARFORD W J, WALTER J F, et al. Lessons learned from data-limited evaluations of data-rich reef fish species in the Gulf of Mexico: implications for providing fisheries management advice for data-poor stocks[J]. Can J Fish Aquat Sci, 2019, 76(9): 1624-1639. doi: 10.1139/cjfas-2017-0482 [28] ARNOLD L M, HEPPELL S S. Testing the robustness of data-poor assessment methods to uncertainty in catch and biology: a retrospective approach[J]. ICES J Mar Sci, 2015, 72(1): 243-250. doi: 10.1093/icesjms/fsu077 [29] WISE J P. Probable under estimates and misreporting of Atlantic small tuna catches, with suggestions for improvement[R]. Madrid: ICCAT Sci Pap, 1986, 25: 324-332. [30] PASCOE S. Bycatch management and the economics of discarding[M]. Rome: FAO, 1997: 13. [31] POLACHECK T. Assessment of IUU fishing for southern bluefin tuna[J]. Mar Policy, 2012, 36(5): 1150-1165. doi: 10.1016/j.marpol.2012.02.019 [32] 童玉和, 陈新军, 田思泉, 等. 渔业管理中生物学参考点的理论及其应用[J]. 水产学报, 2010, 34(7): 1040-1050. [33] 张魁, 刘群, 廖宝超, 等. 渔业数据失真对两种非平衡剩余产量模型评估结果的影响比较[J]. 水产学报, 2018, 42(9): 1378-1389. [34] PRAGER M H. A suite of extensions to a nonequilibrium surplus-production model[J]. Fish Bull, 1994, 92: 374-389. [35] KELL L T, FROMENTIN J M. Evaluation of the robustness of maximum sustainable yield based management strategies to variations in carrying capacity or migration pattern of Atlantic bluefin tuna (Thunnus thynnus)[J]. Can J Fish Aquat Sci, 2007, 64(5): 837-847. doi: 10.1139/f07-051 [36] ICCAT. Report of the 2002 Atlantic bluefin tuna stock assessment session[R]. Madrid: ICCAT Col Vol Sci Pap, 2003, 55: 710-937. [37] ICCAT. Recommendation by ICCAT on penalties applicable in case of non-fulfilment of reporting obligations[R]. Madrid: ICCAT, 2011, 11(15): 263. [38] ICCAT. Recommendation by ICCAT for an interim conservation and management plan for western Atlantic bluefin tuna[R]. Madrid: ICCAT, 2017, 17(6): 104-109. -