Effects of cbpD gene on virulence and related biological characteristics of Vibrio alginolyticus
-
摘要: 为研究几丁质结合蛋白 (Chitin-binding protein D, CbpD) 对溶藻弧菌 (Vibrio alginolyticus) 毒力和相关生物学特性的影响,通过同源重组技术构建溶藻弧菌ZJ-T的cbpD基因缺失突变株ZJ-T-ΔcbpD,比较突变株与野生株对斑马鱼 (Danio rerio) 的毒性,以及毒力相关生理过程,包括生长能力、运动性、胞外蛋白酶分泌活性、溶血活性、抗生素敏感性、生物膜形成、过氧化氢 (H2O2) 和铜离子 (Cu2+) 抗性以及铁离子 (Fe3+) 吸收能力的差异。研究发现,cbpD缺失后,溶藻弧菌对斑马鱼的毒力显著减弱,且细菌游动能力、涌动能力和胞外蛋白酶活性均降低,突变株对 Cu2+的抗性提高;cbpD的突变不影响溶藻弧菌在富营养培养基中的生长、生物膜的形成、溶血活性、对大部分抗生素敏感性、对H2O2的抗性和Fe3+的获取能力。结果表明,cbpD可能通过正调控溶藻弧菌的运动能力和胞外蛋白酶分泌活性,而促进溶藻弧菌的毒力。Abstract: In order to study the effect of the chitin binding protein D (CbpD) on the virulence and related biological characteristics of Vibrio alginolyticus, we constructed the cbpD gene deletion mutant strain of V. alginolyticus ZJ-T by homologous recombination technique. Then we compared the virulence to Danio rerio and other related physiological processes between the wild type strain and the cbpD gene mutant strain, including the growth ability, motility, extracellular protease secretion activity, hemolytic activity and antibiotic sensitivity, biofilm formation, hydrogen peroxide and copper ion resistance as well as ion absorption capacity. The results show that due to the absence of cbpD gene, the swimming motility, swarming motility and extracellular protease activity all reduced, while the resistance to copper ion of the mutant strain strengthened, and its virulence toD. rerio was weakened. However, the deletion of cbpD gene did not affect the growth of the strain in nutrient-rich medium, biofilm formation, hemolytic activity, stress response to H2O2, uptake and utilization of iron and sensitivity to most antibiotics. In conclusion, the results indicate that cbpD may promote the virulence by positively regulating the motility, extracellular protease secretion activity of V. alginolyticus.
-
Key words:
- Vibrio alginolyticus /
- cbpD gene /
- Gene knockout /
- Virulence regulation /
- Biological characteristics
-
图 1 缺失株ZJ-T-ΔcbpD的构建
注:a. 质粒 pSW7848 线性化条带;b. cbpD 上下游片段,泳道 2 为 cbpD 上游同源臂,泳道 3 为 cbpD 下游同源臂;c. 重组自杀质粒 PCR 鉴定扩增片段;d. cbpD 缺失株的鉴定,泳道 5 为野生株扩增结果,泳道 6 为潜在突变株扩增结果。
Figure 1. Construction of deletion strain ZJ-T-ΔcbpD
Note: a. Plasmid pSW7848 linearization band; b. cbpD upstream and downstream fragments, and Lane 2 is the upstream, while Lane 3 is the downstream; c. PCR to identify segment of recombinant suicide plasmid; d. Identification of cbpD deletion strain, Lane 5 is the amplification result of the wild strain, and Lane 6 is the amplification result of the potential mutant strain.
图 7 溶藻弧菌ZJ-T和ZJ-T-ΔcbpD对过氧化氢、硫酸铜以及铁离子螯合剂2-2'-联吡啶的敏感性
注:a. LBS 琼脂平板;b. 0.003% H2O2-LBS 平板;c. 4.5 mmol·L−1 CuSO4-LBS 平板;d. 150 μmol·L−1 DIP-LBS 平板。
Figure 7. Sensitivity to H2O2, CuSO4 and DIP of wild type and cbpD mutant on LBS plate
Note: a. LBS agar plate; b. 0.003% H2O2-LBS agar plate; c. 4.5 mmol·L−1 CuSO4-LBS agar plate; d. 150 μmol·L−1 DIP-LBS agar plate.
表 1 本研究所用菌株及质粒
Table 1. Strains and plasmids used in this study
菌株或质粒
Strain or plasmid相关特征
Relevant characteristics来源
Source菌株 Strain Vibrio alginolyticus ZJ-T 氨苄抗性;野生菌株ZJ-51半透明/光滑变体;分离自中国南部沿海患病石斑鱼 [15] ZJ-T-ΔcbpD 缺失cbpD基因的ZJ-T突变株 本文构建 E. coliⅡ3813 lacIQ,thi1,supE44,endA1,recA1,hsdR17,gyrA462,zei298::Tn10[Tc],ΔthyA::erm-pir116;自杀质粒pSW7848的中间宿主 [16] E. coli GEB883 大肠杆菌野生株K12 ΔdapA::ermpir RP4-2 ΔrecAgyrA462,zei298::Tn10;接合作用供体菌 [17] 质粒 Plasmid pSW7848 氯霉素抗性;具有R6K起点的自杀质粒,需要pir蛋白进行复制,带ccdB毒性基因 [18] pSW7848-cbpDup-cbpD down 氯霉素抗性;包括cbpD上下游同源臂的pSW7848质粒 本文构建 表 2 本研究所用引物
Table 2. Primers used in this study
引物
Primer引物序列 (5'—3')
Primer sequence (5'–3')用途
ApplicationpSW7848_fwd GTCTGATTCGTTACCAATTATGACAAC 扩增pSW7848片段 pSW7848_rev GAATTCGATATCAAGCTTATCGATAC cbpD-U-F ataagcttgatatcgaattcCAACATATGTGGGATAGTGCGT 扩增cbpD上游同源臂 cbpD-U-R ggtccattctttaccCTGAAACACAAGCGGTTTAAGC cbpD-D-F aaccgcttgtgtttcagGGTAAAGAATGGACCGCTC 扩增cbpD下游同源臂 cbpD-D-R taattggtaacgaatcagacGTCTTGGTTCTTAAAGGAGCTG Del-check-pSW7848-F TCACTGTCCCTTATTCGCACC 验证cbpD上下游片段是否与
质粒pSW7848重组成功Del-check-pSW7848-R CTGCTTTTGAGCACTACCCG Del-cbpD-check-F GTCACAACATTACGGGATCTAAC 检验cbpD基因是否成功敲除 Del-cbpD-check-R GCGAATAACGATATGTGCTCTG 表 3 药敏试验结果
Table 3. Drug sensitivity tests results of ZJ-T and ZJ-T-ΔcbpD
药物
Drug每片含量
Content of each tablet/(μg·片−1)ZJ-T ZJ-T-ΔcbpD 抑菌圈直径
Size of inhibition zone/mm敏感性
Sensitivity抑菌圈直径
Size of inhibition zone/mm敏感性
Sensitivity克拉霉素 Claricid 15 18.24±1.10 S 15.59±0.81 I 利福平 Rifampin 5 15.35±0.35 R 13.66±0.33 R 阿莫西林 Amoxicillin 20 7.67±0.45 R 0 R 多西环素 Doxycycline 30 12.79±0.32 I 13.08±0.19 I 磺胺异噁唑 Sulfafurazole 300 0 R 0 R 麦迪霉素 Medimycin 30 9.63±0.64 R 8.52±0.12 R 头孢氨苄 Cephalexin 30 8.06±0.62 R 7.40±0.24 R 氟苯尼考 Florfenicol 30 22.15±1.31 S 20.96±0.78 S 妥布霉素 Tobramycin 10 15.07±1.32 S 15.25±2.01 S 环丙沙星 Ciprofloxacin 5 16.37±1.07 I 16.98±1.56 I 恩诺沙星 Enrofloxacin 10 15.04±0.87 R 14.91±0.44 R 呋喃唑酮 Furazolidone 100 11.77±1.08 R 10.81±0.43 R 复方新诺明 SMZ/TMP 23.75/1.25 0 R 0 R 庆大霉素 Gentamicin 10 13.43±0.47 I 12.38±0.17 I 链霉素 Streptomycin 10 8.12±0.16 R 8.08±0.12 R 头孢唑啉 Cefazolin 30 10.01±0.78 R 9.73±0.04 R 四环素 Tetracycline 30 12.89±0.73 R 12.90±1.15 R 红霉素 Erythromycin 15 16.86±0.91 I 15.04±0.68 I 氯霉素 Chloramphenicol 30 20.93±1.08 S 21.19±0.45 S 氨苄西林 Ampicillin 10 0 R 0 R 氧氟沙星 Ofloxacin 5 15.72±0.73 I 15.88±0.28 I 诺氟沙星 Norfloxacin 10 14.24±0.62 I 14.75±0.84 I 万古霉素 Vancomycin 30 0 R 0 R 注:R. 耐药;I. 中度敏感;S. 高度敏感。 Note: R. Resistance; I. Moderately sensitivity; S. Highly sensitivity. -
[1] REN C, HU C, JIANG X, et al. Distribution and pathogenic relationship of virulence associated genes among Vibrio alginolyticus from the mariculture systems[J]. Mol Cell Probe, 2013, 27(3): 164-168. [2] LI X, ZHANG C, WEI F, et al. Bactericidal activity of a holin-endolysin system derived from Vibrio alginolyticus phage HH109[J]. Microb Pathogenesis, 2021, 159: 105135. doi: 10.1016/j.micpath.2021.105135 [3] ZUO Y, ZHAO L, XU X, et al. Mechanisms underlying the virulence regulation of new Vibrio alginolyticus ncRNA Vvrr1 with a comparative proteomic analysis[J]. Emerg Microbes Infec, 2019, 8(1): 1604-1618. doi: 10.1080/22221751.2019.1687261 [4] MOHAMAD N, ROSELI F A M, AZMAI M N A, et al. Natural concurrent infection of Vibrio harveyi and V. alginolyticus in cultured hybrid groupers in Malaysia[J]. J Aquat Anim Health, 2019, 31(1): 88-96. doi: 10.1002/aah.10055 [5] YANG B, ZHAI S, LI X, et al. Identification of Vibrio alginolyticus as a causative pathogen associated with mass summer mortality of the Pacific oyster (Crassostrea gigas) in China[J]. Aquaculture, 2021, 535: 736363. doi: 10.1016/j.aquaculture.2021.736363 [6] FAHMY N M, HAMED E sayed A E. Isolation and characterization of Vibrio alginolyticus strain HAT3 causing skin ulceration disease in cultured sea cucumber Holothuria atra (Jaeger, 1833)[J]. Egypt J Aquat Res, 2022, 48(1): 75-81. [7] ZHAO Z, LIU J, DENG Y, et al. The Vibrio alginolyticus T3SS effectors, Val1686 and Val1680, induce cell rounding, apoptosis and lysis of fish epithelial cells[J]. Virulence, 2018, 9(1): 318-330. doi: 10.1080/21505594.2017.1414134 [8] 王俊霖, 招茵, 苏茵茵, 等. 溶藻弧菌T3SS exsD基因敲除突变株构建及其表型特征[J]. 广东海洋大学学报, 2021, 41(5): 35-43. doi: 10.3969/j.issn.1673-9159.2021.05.005 [9] BUNPA S, CHAICHANA N, TENG J L L, et al. Outer membrane protein A (OmpA) is a potential virulence factor of Vibrio alginolyticus strains isolated from diseased fish[J]. J Fish Dis, 2020, 43(2): 275-284. doi: 10.1111/jfd.13120 [10] CAI S, CHENG H, PANG H, et al. AcfA is an essential regulator for pathogenesis of fish pathogen Vibrio alginolyticus[J]. Vet Microbiol, 2018, 213: 35-41. doi: 10.1016/j.vetmic.2017.11.016 [11] HUANG L, GUO L, XU X, et al. The role of RpoS in the regulation of Vibrio alginolyticus virulence and the response to diverse stresses[J]. J Fish Dis, 2019, 42(5): 703-712. doi: 10.1111/jfd.12972 [12] GAVIARD C, COSETTE P, JOUENNE T, et al. LasB and CbpD virulence factors of Pseudomonas aeruginosa carry multiple post-translational modifications on their lysine residues[J]. J Proteome Res, 2019, 18(3): 923-933. [13] 王晓辉. 海洋细菌DL-6几丁质酶和几丁质结合蛋白的生化性质与功能研究[D]. 大连: 大连理工大学, 2016: 14. [14] ASKARIAN F, UCHIYAMA S, MASSON H, et al. The lytic polysaccharide monooxygenase CbpD promotes Pseudomonas aeruginosa virulence in systemic infection[J]. Nat Commun, 2021, 12(1): 1230. doi: 10.1038/s41467-021-21473-0 [15] HUANG X, CHEN C, REN C, et al. Identification and characterization of a locus putatively involved in colanic acid biosynthesis in Vibrio alginolyticus ZJ-51[J]. Biofouling, 2018, 34(1): 1-14. doi: 10.1080/08927014.2017.1400020 [16] le ROUX F, BINESSE J, SAULNIER D, et al. Construction of a Vibrio splendidus mutant lacking the metalloprotease gene vsm by use of a novel counterselectable suicide vector[J]. Appl Environ Microb, 2007, 73(3): 777-784. doi: 10.1128/AEM.02147-06 [17] NGUYEN A N, DISCONZI E, CHARRIÈRE G M, et al. csrb gene duplication drives the evolution of redundant regulatory pathways controlling expression of the major toxic secreted metalloproteases in Vibrio tasmaniensis LGP32[J]. MSphere, 2018, 3(6): e00582-18. [18] VAL M E, SKOVGAARD O, DUCOS-GALAND M, et al. Genome engineering in Vibrio cholerae: a feasible approach to address biological issues[J]. PLOS Genet, 2012, 8(1): e1002472. doi: 10.1371/journal.pgen.1002472 [19] DENG Y, CHEN C, ZHAO Z, et al. The RNA chaperone Hfq is involved in colony morphology, nutrient utilization and oxidative and envelope stress response in Vibrio alginolyticus[J]. PLOS ONE, 2016, 11(9): e0163689. doi: 10.1371/journal.pone.0163689 [20] VAZQUEZ S, MERINO L, MACCORMACK W, et al. Protease-producing psychrotrophic bacteria isolated from Antarctica[J]. Polar Biol, 1995, 15(2): 131-135. [21] 邓益琴, 陈偿, 苏友禄, 等. 溶藻弧菌ZJ-T小RNA srvg23535基因突变株的构建及其功能初探[J]. 微生物学通报, 2019, 46(4): 829-841. [22] SPAN E A, MARIETTA M A. The framework of polysaccharide monooxygenase structure and chemistry[J]. Curr Opin Struc Biol, 2015, 35: 93-99. doi: 10.1016/j.sbi.2015.10.002 [23] BHOWMICK R, GHOSAL A, DAS B, et al. Intestinal adherence of Vibrio cholerae involves a coordinated interaction between colonization factor GbpA and mucin[J]. Infect Immun, 2008, 76(11): 4968-4977. doi: 10.1128/IAI.01615-07 [24] CHAUDHURI S, BRUNO J C, ALONZO F, et al. Contribution of chitinases to Listeria monocytogenes pathogenesis[J]. Appl Environ Microb, 2010, 76(21): 7302-7305. doi: 10.1128/AEM.01338-10 [25] FREDERIKSEN R F, PASPALIARI D K, LARSEN T, et al. Bacterial chitinases and chitin-binding proteins as virulence factors[J]. Microbiology, 2013, 159(Pt5): 833-847. [26] JOSENHANS C, SUERBAUM S. The role of motility as a virulence factor in bacteria[J]. Int J Med Microbiol, 2002, 291(8): 605-614. doi: 10.1078/1438-4221-00173 [27] ZHOU S, TU X, PANG H, et al. A T3SS regulator mutant of Vibrio alginolyticus affects antibiotic susceptibilities and provides significant protection to Danio rerio as a live attenuated vaccine[J]. Front Cell Infect Mi, 2020, 10: 183. doi: 10.3389/fcimb.2020.00183 [28] CAO X, WANG Q, LIU Q, et al. Identification of a LuxO-regulated extracellular protein Pep and its roles in motility in Vibrio alginolyticus[J]. Microb Pathogenesis, 2011, 50(2): 123-131. doi: 10.1016/j.micpath.2010.12.003 [29] ZHOU Z, PANG H, DING Y, et al. VscO, a putative T3SS chaperone escort of Vibrio alginolyticus, contributes to virulence in fish and is a target for vaccine development[J]. Fish Shellfish Immunol, 2013, 35(5): 1523-1531. doi: 10.1016/j.fsi.2013.08.017 [30] WATNICK P I, LAURIANO C M, KLOSE K E, et al. The absence of a flagellum leads to altered colony morphology, biofilm development and virulence in Vibrio cholerae O139[J]. Mol Microbiol, 2001, 39(2): 223-235. doi: 10.1046/j.1365-2958.2001.02195.x [31] 李莹玉, 贺小贤, 蒋合阳, 等. 组氨酸激酶BaeS对溶藻弧菌毒力因子和环境应激的作用[J]. 陕西科技大学学报, 2022, 40(1): 57-64. [32] KIM I H, KIM S Y, PARK N Y, et al. Cyclo-(L-Phe-L-Pro), a quorum-sensing signal of Vibrio vulnificus, induces expression of hydroperoxidase through a ToxR-LeuO-HU-RpoS signaling pathway to confer resistance against oxidative stress[J]. Infect Immun, 2018, 86(9): e00932-17. [33] KARLIN K D. Metalloenzymes, structural motifs, and inorganic models[J]. Science, 1993, 261(5122): 701-708. doi: 10.1126/science.7688141 [34] HODGKINSON V, PETRIS M J. Copper homeostasis at the host-pathogen interface[J]. J Biol Chem, 2012, 287(17): 13549-13555. doi: 10.1074/jbc.R111.316406 [35] VANHOVE A S, RUBIO T P, NGUYEN A N, et al. Copper homeostasis at the host Vibrio interface: lessons from intracellular Vibrio transcriptomics[J]. Environ Microbiol, 2016, 18(3): 875-888. doi: 10.1111/1462-2920.13083 [36] KONG W, HUANG L, SU Y, et al. Investigation of possible molecular mechanisms underlying the regulation of adhesion in Vibrio alginolyticus with comparative transcriptome analysis[J]. Antonie Van Leeuwenhoek, 2015, 107(5): 1197-1206. doi: 10.1007/s10482-015-0411-9 [37] AFFANDI T, MCEVOY M M. Mechanism of metal ion-induced activation of a two-component sensor kinase[J]. Biochem J, 2019, 476(1): 115-135. doi: 10.1042/BCJ20180577 [38] BURRIDGE L, WEIS J S, CABELLO F, et al. Chemical use in salmon aquaculture: a review of current practices and possible environmental effects[J]. Aquaculture, 2010, 306(1/2/3/4): 7-23. [39] RATTANAMA P, THOMPSON J R, KONGKERD N, et al. Sigma E regulators control hemolytic activity and virulence in a shrimp pathogenic Vibrio harveyi[J]. PLOS ONE, 2012, 7(2): e32523. doi: 10.1371/journal.pone.0032523 [40] HALL-STOODLEY L, STOODLEY P. Biofilm formation and dispersal and the transmission of human pathogens[J]. Trends Microbiol, 2005, 13(1): 7-10. doi: 10.1016/j.tim.2004.11.004 -