A preliminary study on community structure of mesopelagic fish in cold seep of Xisha Islands
-
摘要: 为了解冷泉生态系统鱼类种类组成,以及为相关区域的生物多样性保护和监测工作提供科学依据。采用中层拖网对西沙群岛冷泉海域内外区域中层鱼类资源进行调查,共采集鱼类12目31科62属106种,以灯笼鱼目和巨口鱼目为最主要类群。其中,冷泉海域11目30科54属84种;冷泉外海域6目13科32属60种。冷泉海域内外区域共有鱼类38种,共有优势种为斯氏蝰鱼 (Chauliodus sloani)、尾明角灯鱼 (Ceratoscopelus warmingii)、喀氏眶灯鱼 (Diaphus garmani)。Jaccard种类相似性指数 (I) 表明,冷泉海域内外区域中层鱼类种类相似度为中等不相似 (I=35.8%)。鱼类群落的平均分类差异指数 (Δ+) 冷泉海域显著大于冷泉外海域 (P<0.01),但鱼类群落的分类差异变异指数 (Λ+) 冷泉海域小于冷泉外海域 (P<0.01)。从水层分布来看,冷泉海域内外中层鱼类群落物种组成存在明显差异 (P<0.01);表层水域中层鱼类多样性冷泉区低于冷泉外部,而深层水域则相反。冷泉内外不同站位的群落组成之间在水层及时间上存在相关性,冷泉内部的白天深层和夜间深层相似性较高;冷泉内部夜间表层和冷泉外部夜间表层相似性较高。研究结果初步显示,冷泉内外中层鱼类群落组成差异显著,冷泉区中层鱼类种类更多,且深层水域的种类多样性较高;区分冷泉内外海域中层鱼类群落的关键种群为长鳍虹灯鱼 (Bolinichthys longipes) 和串灯鱼 (Vinciguerria nimbara) 等8种,累计贡献度达到56.06%。Abstract: To recognize the fish composition of cold seep ecosystems, and provide a scientific basis for biodiversity conservation and monitoring in the relevant regions, we investigated the mesopelagic fish resources inside and outside the cold seep in the Xisha Islands by a mesopelagic trawler. A total of 106 species of mesopelagic fish had been identified which belong to 62 Genera, 31 Families and 12 Orders, with the dominant groups of Myctophiformes and Stomiiformes. Among them, 84 species of fish belonging to 54 Genera, 30 Families, 11 Orders were collected inside the cold seep; while 60 species of fish belonging to 32 Genera, 13 Families and 6 Orders were collected outside the cold seep. There were 38 shared species of mesopelagic fish belonging to 22 Genera, 9 Families, 5 Orders inside and outside the cold seep, and the main shared species were Chauliodus sloani, Ceratoscopelus warmingii and Diaphus garmani. The Jaccard species similarity index shows that the species similarity of mesopelagic fish was moderately different inside and outside the cold seep (I=35.8%). The average taxonomic distinctness (Δ+) of mesopelagic fish was significantly higher inside the cold seep than outside (P<0.01), but the variation in the taxonomic distinctness (Λ+) of mesopelagic fish community was inverse (P<0.01). From the perspective of pelagic distribution, there were significant differences in the species composition of the mesopelagic fish communities inside and outside the cold seep (P<0.01). In the surface waters, the mesopelagic fish diversity inside the cold seep was lower than outside, while it's inverse in the deeper water layers. There was a correlation between the fish communities at different stations inside and outside the cold seep in terms of water stratigraphy and timing, with higher similarity between the deeper layers inside the cold seep; and higher similarity between the nocturnal surface layers inside the cold seep area and the nocturnal surface layers outside the cold seep. The results show that there are differences in the mesopelagic fish communities inside and outside the cold seep, with more species of mesopelagic fish inside the cold seep and a higher diversity of species in the deeper water layers. Eight key species that distinguish the mesopelagic fish communities in the waters inside and outside the cold seep include Bolinichthys longipes and Vinciguerria nimbara, having a cumulative contribution of 56.06%.
-
Key words:
- Mesopelagic fish /
- Cold seep /
- Species composition /
- Dominant species /
- Xisha Islands
-
表 1 南海西沙冷泉内外区域中层鱼类拖网采样站位信息
Table 1. Information of sampling stations for mesopelagic trawl in sea area inside and outside cold seep in Xisha Islands of South China Sea
站位编号
Station No.采样水层
Sampling water layer站位水深
Station depth/m平均拖速
Mean towing speed/(m·s–1)放网时段
Trawl time拖网时长
Trawl duration/hA1 深层 400~600 2.06 白天 1 A2 深层 400~600 1.90 夜间 1 A3 表层 75 2.26 夜间 1 B1 深层 400~600 1.85 白天 1 B2 深层 400~600 1.90 夜间 1 B3 表层 75 1.90 夜间 1 表 2 南海西沙冷泉内外区域站位种类组成差异
Table 2. Difference of species composition in each station in sea area inside and outside cold seep in Xisha Islands of South China Sea
站位 Station A1 A2 A3 B1 B2 B3 A1 31 17 10 A2 39.24% 16 16 A3 29.31% 22.54% 15 B1 18.18% 15 6 B2 30.95% 30.0% 16 B3 40.54% 16.67% 27.12% 种类数
Species number49 61 26 16 49 26 注:对角线右上方为站位间共有种类数,对角线左下方为Jaccard相似性系数。 Note: The number of shared species between stations is above the diagonal line, and the Jaccard similarity coefficient is below the diagonal line. 表 3 南海西沙冷泉内外区域不同站位鱼类平均分类多样性指数及分类差异变异指数
Table 3. Average taxonomic distinctness (Δ+) and variation in taxonomic distinctness (Λ+) in each station in sea area inside and outside cold seep in Xisha Islands of South China Sea
站位
Station平均分类差异指数
Δ+分类差异变异指数
Λ+A1 70.24 275.45 A2 70.74 334.20 A3 70.16 324.31 B1 63.17 453.31 B2 64.20 454.80 B3 55.82 531.40 表 4 南海西沙冷泉内外区域各站位中层鱼类优势种
Table 4. Dominant species of mesopelagic fish in each station in sea area inside and outside cold seep in Xisha Islands of South China Sea
站位
Station优势种
Dominant species相对重要性
指数
IRI优势度
百分比
IRI%A1 斯氏蝰鱼 Chauliodus sloani 2 957.81 14.79 蛇口异星杉鱼 Heterophotus ophistoma 2 870.73 14.35 长钻光鱼 Gonostoma elongatus 1 335.23 6.68 天纽珍灯鱼 Lampanyctus tenuiformis 1 320.00 6.60 褶胸鱼 Sternoptyx diaphana 1 102.62 5.51 A2 斯氏蝰鱼 C. sloani 2 928.60 14.64 天纽珍灯鱼 Lampanyctus tenuiformis 1 713.85 8.57 A3 尾明角灯鱼 Ceratoscopelus warmingii 5 206.78 26.03 喀氏眶灯鱼 Diaphus garmani 4 072.03 20.36 前鳍盗目鱼 Lestidiops jayakari 2 427.66 12.14 马来眶灯鱼 D. malayanus 1 720.47 8.60 瓦氏眶灯鱼 D. watasei 1 656.03 8.28 B1 长银斧鱼 Argyropelecus affinis 5 311.29 26.56 西钻光鱼 G. atlanticum 3 272.97 16.36 灿烂眶灯鱼 D. fulgens 2 186.23 10.93 银斧鱼 A. hemigymnus 1 893.63 9.47 串灯鱼 Vinciguerria nimbara 1 611.99 8.06 黑柔骨鱼 Malacosteus niger 1 578.59 7.89 B2 斯氏蝰鱼 C. sloani 3 123.79 15.62 近壮灯鱼 Hygophum proximum 1 439.34 7.20 西钻光鱼 G. atlanticum 1 399.58 7.00 B3 尾明角灯鱼 C. warmingii 4 494.93 22.47 长鳍虹灯鱼 Bolinichthys longipes 3 239.39 16.20 喀氏眶灯鱼 D. garmani 2 692.64 13.46 串灯鱼 Vinciguerria nimbara 2 131.97 10.66 条带眶灯鱼 D. brachycephalus 1 785.02 8.93 表 5 南海西沙冷泉内外区域中层鱼类多样性指数
Table 5. Diversity index of mesopelagic fish in sea area inside and outside cold seep in Xisha Islands of South China Sea
站位
StationShannon-Wiener
多样性指数
H'Pielou 均匀度
指数
J'Margalef 丰富度
指数
DA1 3.47 0.89 6.45 A2 3.54 0.86 7.27 A3 2.04 0.63 2.30 B1 2.34 0.84 2.67 B2 3.32 0.85 4.37 B3 2.23 0.68 2.58 表 6 南海西沙冷泉内外区域中层鱼类百分比相似性分析
Table 6. Results of similarity percentage analysis (SIMPER) of mesopelagic fish in sea area inside and outside cold seep in Xisha Islands of South China Sea
物种
Species平均不相似度
Average dissimilarity/%累计贡献度
Cumulative contribution/%数量百分比 Quantity percentage/% 冷泉内
Inside cold seep冷泉外
Outside cold seep长鳍虹灯鱼 Bolinichthys longipes 5.31 10.40 0.64 8.87 串灯鱼 Vinciguerria nimbara 5.12 20.42 0.17 8.28 喀氏眶灯鱼 Diaphus garmani 3.67 27.61 27.46 10.52 近壮灯鱼 Hygophum proximum 3.48 34.42 0.60 5.91 条带眶灯鱼 Diaphus brachycephalus 3.18 40.63 0.04 5.10 西钻光鱼 Gonostoma atlanticum 3.10 46.69 0.56 5.28 马来眶灯鱼 Diaphus malayanus 2.55 51.69 12.81 3.57 多鳞孔头鲷 Melamphaes polylepis 2.23 56.06 0.68 3.98 -
[1] SUESS E. Marine cold seeps and their manifestations: geological control, biogeochemical criteria and environmental conditions[J]. Int J Earth Sci, 2014, 103(7): 1889-1916. doi: 10.1007/s00531-014-1010-0 [2] WANG J L, WU S G, KONG X, et al. Subsurface fluid flow at an active cold seep area in the Qiongdongnan Basin, northern South China Sea[J]. J Asian Earth Sci, 2018, 168: 17-26. doi: 10.1016/j.jseaes.2018.06.001 [3] MIRONOV A N. New taxa of stalked crinoids from the suborder Bourgueticrinina (Echinodermata, Crinoidea)[J]. Zool Stud, 2000, 79(6): 712-728. [4] KOVA T Y, MEKHANIKOVA I V, SIDELEVA V G, et al. Trophic relationships between macroinvertebrates and fish in St. Petersburg methane seep community in abyssal zone of Lake Baikal[J]. Contemp Probl Ecol, 2017, 10(2): 147-156. doi: 10.1134/S1995425517020123 [5] CRUAUD P, DECKER C, OLU K, et al. Ecophysiological differences between vesicomyid species and metabolic capabilities of their symbionts influence distribution patterns of the deep-sea clams[J]. Mar Ecol, 2019, 40(3): e12541. [6] MACDONALD I R, LEIFER I, SASSEN R, et al. Transfer of hydrocarbons from natural seeps to the water column and atmosphere[J]. Geofluids, 2002, 2(2): 95-107. doi: 10.1046/j.1468-8123.2002.00023.x [7] 蒲燕萍, 孙春岩, 陈世成, 等. 南海琼东南盆地-西沙海槽天然气水合物地球化学勘探与资源远景评价[J]. 地质通报, 2009, 28(11): 1656-1661. doi: 10.3969/j.issn.1671-2552.2009.11.015 [8] 万志峰, 张伟, 陈崇敏, 等. 琼东南盆地冷泉差异发育特征及其深部控制机理[J]. 海洋地质前沿, 2021, 37(7): 1-10. [9] OLIVAR M P, BERNAL A, MOLI B, et al. Vertical distribution, diversity and assemblages of mesopelagic fishes in the western Mediterranean[J]. Deep-Sea Res I, 2013, 62: 53-69. [10] CLAVEL-HENRY M, PIRODDI C, QUATTROCCHI F, et al. Spatial distribution and abundance of mesopelagic fish biomass in the Mediterranean Sea[J]. Front Mar Sci, 2020, 7: 573986. doi: 10.3389/fmars.2020.573986 [11] SOBRADILLO B, BOYRA G, MARTINEZ U, et al. Target strength and swimbladder morphology of Mueller's pearlside (Maurolicus muelleri)[J]. Sci Rep, 2019, 9(1): 17311. doi: 10.1038/s41598-019-53819-6 [12] BADCOCK J. The vertical distribution of mesopelagic fishes collected on the sond cruise[J]. J Mar Biolog Assoc UK, 1970, 50(4): 1001-1044. doi: 10.1017/S0025315400005920 [13] EDUARDO L N, LUCENA-FREDOU F, MINCARONE M M, et al. Trophic ecology, habitat, and migratory behaviour of the viperfish Chauliodus sloani reveal a key mesopelagic player[J]. Sci Rep, 2020, 10(1): 20996. doi: 10.1038/s41598-020-77222-8 [14] BOYD P W, CLAUSTRE H, LEVY M, et al. Multi-faceted particle pumps drive carbon sequestration in the ocean[J]. Nature, 2019, 568(7752): 327-335. doi: 10.1038/s41586-019-1098-2 [15] CAVAN E L, LAURENCEAU-CORNRC E C, BRESSAC M, et al. Exploring the ecology of the mesopelagic biological pump[J]. Prog Oceanogr, 2019, 176: 102125. doi: 10.1016/j.pocean.2019.102125 [16] BACKUS R H, CRADDOCK J E, HAEDRICH R L, et al. The distribution of mesopelagic fishes in the Equatorial and Western North Atlantic Ocean[J]. J Mar Res, 1970, 28: 179-201. [17] DOYA C, CHATZIEVANGELOU D, BAHAMON N, et al. Seasonal monitoring of deep-sea megabenthos in Barkley Canyon cold seep by internet operated vehicle (IOV)[J]. PLOS ONE, 2017, 12(5): e0176917. doi: 10.1371/journal.pone.0176917 [18] ROSS S W, QUATTRINI A M, ROA-VARON A Y, et al. Species composition and distributions of mesopelagic fishes over the slope of the north-central Gulf of Mexico[J]. Deep-Sea Res II, 2010, 57(21/22/23): 1926-1956. [19] 徐姗楠, 郭建忠, 范江涛, 等. 夏季大亚湾鱼类群落结构与多样性[J]. 生态学杂志, 2020, 39(4): 1254-1264. [20] SIMPSON E H. Measurement of diversity[J]. Nature, 1949, 163(4148): 688. doi: 10.1038/163688a0 [21] CLARKE K R, WARWICK R. A further biodiversity index applicable to species lists: variation in taxonomic distinctness[J]. Mar Ecol Prog Ser, 2001, 216: 265-278. doi: 10.3354/meps216265 [22] PIANKA E R. Ecology of the agamid lizard Amphibolurus isolepis in Western Australia[J]. Copeia, 1971, 3(3): 527-536. [23] KREBS C J. Ecological methodology[M]. New York: Harper Collins Publishers, 1989: 1-624. [24] PIELOU E C. The use of information theory in the study of ecological succession[J]. J Theor Biol, 1966, 10: 370-383. doi: 10.1016/0022-5193(66)90133-0 [25] MARGALEF R. Information theory in ecology[J]. Gen Syst, 1958, 3: 36-71. [26] 朱晓芬, 陈彬, 俞炜炜, 等. 厦门湾大型底栖动物分类学多样性指数及分类充分性[J]. 生态学报, 2018, 38(15): 5554-5565. [27] 舒璐, 林佳艳, 徐源, 等. 基于环境DNA宏条形码的洱海鱼类多样性研究[J]. 水生生物学报, 2020, 44(5): 1080-1086. doi: 10.7541/2020.125 [28] 舒卫先, 胡菊香, 陈胜, 等. 流域治理后生态恢复期的沙颍河干流底栖动物群落结构分析[J]. 水生态学杂志, 2014, 35(4): 35-42. doi: 10.3969/j.issn.1674-3075.2014.04.006 [29] 王雪辉, 杜飞雁, 邱永松, 等. 1980—2007年大亚湾鱼类物种多样性、区系特征和数量变化[J]. 应用生态学报, 2010, 21(9): 2403-2410. [30] 许友伟, 江艳娥, 范江涛, 等. 南海中部海域秋冬季中层渔业生物群落结构的初步研究[J]. 南方水产科学, 2016, 12(4): 49-56. doi: 10.3969/j.issn.2095-0780.2016.04.006 [31] 袁梦, 陈作志, 张俊, 等. 南海北部陆坡海域中层渔业生物群落结构特征[J]. 南方水产科学, 2018, 14(1): 85-91. doi: 10.3969/j.issn.20950780.2018.01.011 [32] ZHANG J, WANG X L, JIANG Y, et al. Species composition and biomass density of mesopelagic nekton of the South China Sea continental slope[J]. Deep-Sea Res II, 2019, 167(C): 105-120. [33] BARJAU-GONZALEZ E, RODRIGUEZ-ROMREO J, GALVAN-MAGANA F, et al. Changes in the taxonomic diversity of the reef fish community of San José Island, Gulf of California, Mexico[J]. Biodivers Conserv, 2012, 21(14): 3543-3554. doi: 10.1007/s10531-012-0378-z [34] 李媛洁, 张俊, 陈作志, 等. 南沙群岛渚碧礁鱼类分类多样性研究[J]. 南方水产科学, 2020, 16(1): 36-41. doi: 10.12131/20190159 [35] 李圣法. 东海大陆架鱼类群落生态学研究-空间格局及其多样性[D]. 上海: 华东师范大学, 2005: 1-154. [36] 曾晓光, 李娜娜, 杨权, 等. 南沙群岛西南部陆架海域鱼类分类的多样性[J]. 水产学报, 2012, 36(4): 592-600. [37] 张衡. 鱼类分类多样性估算方法在长江河口区的应用[J]. 华东师范大学学报 (自然科学版), 2007(2): 11-22. [38] 史赟荣, 李永振, 卢伟华, 等. 东沙群岛珊瑚礁海域鱼类物种分类多样性研究[J]. 南方水产, 2009, 5(2): 10-16. [39] WANG X L, ZHANG J, ZHAO X Y, et al. Vertical distribution and diel migration of mesopelagic fishes on the northern slope of the South China Sea[J]. Deep-Sea Res II, 2019, 167(C): 128-141. -