留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于CFD评估尺度效应对V型网板水动力的影响

刘景彬 唐浩 许柳雄 孙秋阳 刘伟 银利强 张锋

刘景彬, 唐浩, 许柳雄, 孙秋阳, 刘伟, 银利强, 张锋. 基于CFD评估尺度效应对V型网板水动力的影响[J]. 南方水产科学. doi: 10.12131/20210355
引用本文: 刘景彬, 唐浩, 许柳雄, 孙秋阳, 刘伟, 银利强, 张锋. 基于CFD评估尺度效应对V型网板水动力的影响[J]. 南方水产科学. doi: 10.12131/20210355
LIU Jingbin, TANG Hao, XU Liuxiong, SUN Qiuyang, LIU Wei, YIN Liqiang, ZHANG Feng. Evaluation of scale effect on hydrodynamic force of V-shaped otter board based on CFD[J]. South China Fisheries Science. doi: 10.12131/20210355
Citation: LIU Jingbin, TANG Hao, XU Liuxiong, SUN Qiuyang, LIU Wei, YIN Liqiang, ZHANG Feng. Evaluation of scale effect on hydrodynamic force of V-shaped otter board based on CFD[J]. South China Fisheries Science. doi: 10.12131/20210355

基于CFD评估尺度效应对V型网板水动力的影响

doi: 10.12131/20210355
基金项目: 国家自然科学基金项目 (31902426,31972845);上海市青年科技英才扬帆计划资助 (19YF1419800);农业农村部南极海洋生物资源开发利用项目 (D8002-17-0109)
详细信息
    作者简介:

    刘景彬 (1995—),男,硕士研究生,研究方向为渔具渔法。E-mail: 18340803167@163.com

    通讯作者:

    唐 浩 (1988—),男, 讲师,博士,从事渔具水动力性能研究。E-mail: htang@shou.edu.cn

  • 中图分类号: S 971.4

Evaluation of scale effect on hydrodynamic force of V-shaped otter board based on CFD

  • 摘要: 按相似准则等比例缩小网板构建物理模型测定其水动力,是研究网板水动力特征的主要方式。基于V型网板,利用计算流体力学 (Computational fluid dynamics, CFD) 对比分析了3种尺度比 (1∶2、1∶3和1∶4) 的网板和3种厚度 (2、5和10 mm) 下的升、阻力系数及流场分布,并将其与模型试验结果进行对比,探究不同物理模型尺度对估算网板水动力的影响。结果表明:1) 随着冲角的增加,各尺度的网板阻力系数逐渐增大,升力系数先增大后减小,升阻比逐渐减小;2) 在30°冲角之后,网板后部出现明显的分离涡,造成模拟升力减小;3) 随着网板模型尺度的增大,网板表面边界层分离效果和尾流区流场分离涡逐渐增强,网板升、阻力及升阻比亦呈增大趋势。网板厚度对流场及升、阻力影响较小,最大升力系数相对于模型试验平均误差为4.97%。4) 随着模型尺度增大,网板水动力的预测误差逐渐减小。
  • 图  1  网板参数结构示意图

    Figure  1.  Schematic diagram of structural parameters of otter board models

    图  2  模拟计算区域

    Figure  2.  Domain of simulation calculation

    图  5  V型网板不同冲角下的升力系数、阻力系数与雷诺数的关系

    Figure  5.  Relationship between lift coefficient, drag coefficient and Reynolds number of V-type otter board at different angles of attack

    图  3  网板冲角为40°时周围网格划分

    Figure  3.  Computational grid partitions around the otter board at the angle of attack of 40°

    图  4  网板模型动水槽试验

    Figure  4.  Flume tank test of otter board model

    图  6  网板模型试验和数值模拟水动力

    Figure  6.  Comparison of hydrodynamic force of model otter boards between flume tank test and numerical simulation

    图  7  不同尺度比(左)、厚度(右)水动力系数

    Figure  7.  Hydrodynamic coefficient of different scale ratio (left) thickness (right)

    图  8  网板在不同冲角下的流场分布

    Figure  8.  Flow field distribution of otter board under different angles of attack

    图  9  不同尺度比网板在40°冲角下的流场对比

    Figure  9.  Flow field comparison of otter board with different scales at 40° angle of attack

    表  1  网板编号及试验参数

    Table  1.   Otter board number and experimental parameters

    网板编号
    Otter board No.
    展弦比 λ
    Aspect
    ratio
    板面夹角 Γ
    Dihedral
    angle
    翼展 L
    Wing
    span/m
    翼弦 C
    Chord/m
    面积 S
    Area/m2
    厚度 d
    Thickness/
    mm
    尺度比 λ
    Scale
    ratio
    试验流速
    Tested velocity/
    (m·s−1)
    雷诺数
    Reynolds
    number
    10.510°0.2320.4640.10221∶30.802.1×105
    20.510°0.3500.6900.24021∶21.172.1×105
    30.510°0.1740.3480.06021∶40.602.1×105
    40.510°0.2320.4640.10251∶30.802.1×105
    50.510°0.2320.4640.102101∶30.802.1×105
    下载: 导出CSV

    表  2  不同尺度比网板水动力系数误差

    Table  2.   Hydraulic coefficient deviation of different scale ratio of otter board

    尺度比 Scale ratio1∶21∶31∶4
    最大升力系数 Max lift coefficient 1.235 1.178 1.109
    误差 Deviation 1.13% 6.03% 12.62%
    最大阻力系数Max drag coefficient 1.211 1.138 1.068
    误差 Deviation 1.48% 7.99% 15.07%
    下载: 导出CSV

    表  3  不同厚度网板水动力系数误差

    Table  3.   Hydraulic coefficient deviation of different thickness of otter board

    厚度 Thickness/mm2510
    最大升力系数 Max lift coefficient 1.178 1.208 1.184
    误差 Deviation 6.03% 3.39% 5.49%
    最大阻力系数 Max drag coefficient 1.138 1.134 1.146
    误差 Deviation 7.99% 8.37% 7.24%
    下载: 导出CSV
  • [1] 刘宏伟. 蝠翼式拖网网板的水动力特性研究 [D]. 大连: 大连理工大学, 2018: 1-9.
    [2] MELLIBOVSKY F, PRAT J, NOTTI E, et al. Testing otter board hydrodynamic performances in wind tunnel facilities[J]. Ocean Engin, 2015, 104: 52-62. doi: 10.1016/j.oceaneng.2015.04.064
    [3] MELLIBOVSKY F, PRAT J, NOTTI E, et al. Otter board hydrodynamic performance testing in flume tank and wind tunnel facilities-Science Direct[J]. Ocean Engin, 2018, 149: 238-244. doi: 10.1016/j.oceaneng.2017.12.034
    [4] 刘健, 黄洪亮, 吴越, 等 2种立式曲面缝翼式网板水动力学性能的试验研究 [J]. 南方水产科学, 2015, 11(01): 68-74.
    [5] SU X, LU H S, FENG B, et al. Hydrodynamic characteristics of the double-winged otter board in the deep waters of the Mauritanian Sea[J]. Chin J Oceanol Limnol, 2018: 1417-1424.
    [6] YOU X X, HU F X, KUMAZAWA T, et al. Performance of new hyper-lift trawl door for both mid-water and bottom trawling [J/OL]. Ocean Engin, 2020, 199.https://doi.org/10.1016/j.oceaneng.2020.106989.
    [7] SALA A, FARRAN J, ANTONIJUAN J, et al. Performance and impact on the seabed of an existing- and an experimental-otter board: comparison between model testing and full-scale sea trials[J]. Fish Res, 2009, 100: 156-166. doi: 10.1016/j.fishres.2009.07.004
    [8] YOU X X, HU F X, Z X, et al. Effect of wingtip flow on hydrodynamic characteristics of cambered otter board [J/OL]. Ocean Engin, 2021, 222.https://doi.org/10.1016/j.oceaneng.2021.108611
    [9] BALASH C, BLAKE W, STERLING D. Seeking maximum effectiveness and efficiency for large multi-sail penaeid otter boards [J/OL]. Ocean Engin, 2020, 200.https://doi.org/10.1016/j.oceaneng.2020.107093.
    [10] 宋科委, 郭春雨, 孙聪, 等. 实尺度船舶阻力计算及尺度效应研究[J]. 华中科技大学学报(自然科学版), 2021, 49(6): 74-80.
    [11] PARK C D, MATUDA K, HU F X, et al. Hydrodynamic characteristics of cambered plates in free stream and near the bottom[J]. Nippon Suisan Gakkaishi, 1993, 59(4): 627-632. doi: 10.2331/suisan.59.627
    [12] XU Q C, HUANG L Y, LI X, et al. Parameter optimization of a rectangular cambered otter board using response surface method [J/OL]. Ocean Engin, 2021, 220(3). https://doi.org/10.1016/j.oceaneng.2020.108475.
    [13] CHU W, CHEN G, YE X C, et al. Hydrodynamic performance and structural response characteristics of the double-slotted vertical cambered V-Type otter board[J]. Aquacult Fish, 2020(5): 201-209.
    [14] XU Q C, HUANG L Y, ZHAO F F, et al. Study on the hydrodynamic characteristics of the rectangular V-type otter board using computational fluid dynamics[J]. Fish Sci, 2017, 83(2): 1-10.
    [15] 刘宏伟, 赵云鹏, 毕春伟. 不同展弦比的矩形曲面网板水动力性能的数值模拟[C]//第十四届全国水动力学学术会议暨第二十八届全国水动力学研讨会文集(上册). 北京: 海洋出版社, 2017: 739-745.
    [16] TAKAHASHI Y, FUJIMORI Y, HU F, et al. Design of trawl otter boards using computational fluid dynamics[J]. Fish Res, 2015, 161: 400-407. doi: 10.1016/j.fishres.2014.08.011
    [17] YOU X X, HU F X, DONG S C, et al. Shape optimization approach for cambered otter board using neural network and multi-objective genetic algorithm.[J]. Appl Ocean Res, 2020, 100(C): 102148.
    [18] MATTHEW J, MCHUGH M K, BROADHURST D J, et al. Relative benthic disturbances of conventional and novel otter boards and ground gears[J]. Fish Sci, 2020, 86(6): 245-254.
    [19] 刘志强, 许柳雄, 唐浩, 等. 立式双曲面网板水动力性能及流场可视化研究[J]. 水产学报, 2020, 44(8): 1360-1370.
    [20] 李崇聪. V型网板水动力性能和数值模拟初步研究 [D]. 青岛: 中国海洋大学, 2012: 17-28.
    [21] SHIH T H, LIOU W W, SHABBIR A, et al. A new K-ε eddy viscosity model for high reynolds number turbulent flows[J]. Comput Fluids, 1995, 24(3): 227-238. doi: 10.1016/0045-7930(94)00032-T
    [22] 刘志强. 中层网板水动力性能及流场可视化研究-以立式双曲面网板为例 [D]. 上海: 上海海洋大学, 2020: 34-51.
    [23] 刘志强, 许柳雄, 唐浩, 等. 不同工作姿态下立式双曲面网板水动力及周围流场特性研究[J]. 南方水产科学, 2020, 16(2): 87-98. doi: 10.12131/20190221
    [24] PARK C D, MATUDA K, HU F X, et al. Hydrodynamic characteristics of cambered plates in free stream and near the bottom[J]. Nippon Suisan Gakkaishi, 1993, 59(4): 627-632. doi: 10.2331/suisan.59.627
    [25] PARK C D, MATUDA K, HU F X, et al. The effect of the bottom on the hydrodynamic characteristics of the flat plates[J]. Nippon Suisan Gakkaishi, 1993, 59(1): 79-84. doi: 10.2331/suisan.59.79
    [26] SHEN X L, HU F X, KUMAZAWA T, et al. Hydrodynamic characteristics of a hyper-lift otter board with wing-end plates[J]. Fish Sci, 2015, 81(3): 1-10.
    [27] 左玲玉, 司海清, 李耀, 等. 基于Richardson外推法的CFD离散误差分析 [J/OL]. 指挥控制与仿真, 2021, 12(1): 1-6. http://kns.cnki.net/kcms/detail/32.1759.tj.20211117.1456.012.html.
    [28] ROY C J, OBERKAMPF W L. Verification and validation in computational fluid dynamics[J]. Progr Aerospace Sci, 2002, 38(3): 209-272. doi: 10.1016/S0376-0421(02)00005-2
    [29] STERN F, WILSON R. Comprehensive approach to verification and validation of CFD simulations−−Part 1: methodology and procedures[J]. ASME J Fluids Eng, 2002, 124(3): 810. doi: 10.1115/1.1492827
    [30] WILSON R V, STERB F, COLENAN H W, et al. Comprehensive approach to verification and validation of CFD Simulations−−Part 2: application for rans simulation of a cargo/container ship[J]. ASME J Fluids Eng, 2001, 123(4): 803-810. doi: 10.1115/1.1412236
    [31] 康顺, 石磊, 戴丽萍, 等. CFD模拟的误差分析及网格收敛性研究[J]. 工程热物理学报, 2010, 31(12): 2009-2013.
  • 加载中
计量
  • 文章访问数:  100
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-28
  • 修回日期:  2022-01-06
  • 录用日期:  2022-02-07
  • 网络出版日期:  2022-02-28

目录

    /

    返回文章
    返回