Estimation of genetic parameters and its breeding progress for body mass and body length of Cyprinus carpio var. Quanzhounensis
-
摘要: 为提高全州禾花鲤 (Cyprinus carpio var. Quanzhounensis) 养殖群体的生长速度,采用家系选育方法对其开展了连续2世代的选育,测量了G0、G1和G2代121个家系共3 699尾个体的体质量和体长指标,利用混合线性模型估计体质量和体长性状的遗传力、表型相关和遗传相关,并通过基于目标性状育种值和最小二乘值估计的方法评估了G0—G2代的选择进展。结果显示,禾花鲤体质量变异系数为0.50~0.72,体长性状变异系数为0.18~0.22。体长和体质量的遗传力估计值分别为0.132 (P<0.01) 和0.122 (P<0.01),遗传相关和表型相关分别为0.921 (P<0.01)和0.995 (P<0.01)。采用目标性状最小二乘值和目标性状育种值估计的体质量性状选择反应为12.82%和15.45%,体长性状选择反应为2.76%和6.60%。表明禾花鲤体质量均匀度较低,不利于养殖生产,但具有较高的选育改良潜力;该群体在完成2个世代的家系选育后获得了有效遗传进展,但总体进展不显著。在今后选育过程中可采用分子辅助选育 (Molecular-assisted selection MAS)、大规模混合家系选育等选育策略,以提高选育效率。Abstract: In order to improve the growth rate of the cultured population of Cyprinus carpio var. Quanzhounensis in Quanzhou, two generations of breeding were carried out by family breeding method. The body mass and body length indexes of 3 699 individuals in 121 families of G0, G1 and G2 generations of C. carpio were measured. The heritability, phenotypic correlation and genetic correlation of body mass and body length traits were estimated by mixed linear model. The selection progress of G0−G2 generations was evaluated by the method of breeding value and least square value estimation based on target traits. The results show that the coefficient of variation of body mass and body length was 0.50−0.72 and 0.18−0.22 respectively. The heritability estimates were 0.132 (P<0.01) and 0.122, respectively (P<0.01). The genetic correlation and phenotypic correlation were 0.921 (P<0.01) and 0.995 (P<0.01), respectively. The value of selective reaction in body mass estimated by breeding value based on target traits and least square estimation was 12.82% and 15.45%, respectively, while 2.76% and 6.60% in body length, respectively, which indicates that the evenness of body mass was low, not conductive to breeding production, but had high breeding and improvement potential. In general, this population ofC. carpio var. Quanzhounensis obtained effective genetic progress after two successive generations by the family breeding, but with a modest progress. In is suggested that molecular-assisted selection (MAS) and marker-assisted large-scale mixed families' selection should be adopted in the future breeding so as to improve the breeding efficiency.
-
Key words:
- Cyprinus carpio var. Quanzhounensis /
- Growth traits /
- Breeding progress /
- Family
-
表 1 各世代家系构建和培育
Table 1. Family construction and breeding for each generation
世代
Generation群体
Population家系数
Number of
families个体总数
Number of
individuals各家系平均个体数
Number of individuals
per family养殖池塘
Aquaculture
pond养殖密度
Stocking density/
(尾·m−2)养殖天数
Culturing
days/dG0 选育群 31 907 29.30 P5# 2.3 168 G1 选育群 37 1 087 29.40 P8#、P12# 2.1 (P8#) 152 对照群 6 216 36.00 2.3 (P12#) 150 G2 选育群 41 1 251 30.50 P4#、P7# 2.2 (P4#) 140 对照群 6 238 39.70 2.0 (P7#) 142 合计 Total 121 3 699 32.98 — — — 表 2 体质量和体长的描述性统计量
Table 2. Descriptive statistics of body mass and body length
世代
Generation群体
Population性别
Sex样本数
Number of samples/尾体质量 Body mass 体长 Body length 平均值
Mean/g标准差
SD变异系数
CV平均值
Mean/mm标准差
SD变异系数
CVG0 选育群 全部 906 37.44 27.01 0.72 97.79 20.65 0.21 雌 449 40.88 21.35 0.52 100.52 22.04 0.22 雄 457 33.94 24.60 0.72 95.01 18.74 0.20 G1 选育群 全部 1087 39.60 25.94 0.66 99.81 21.47 0.22 雌 534 40.02 26.99 0.67 99.82 21.88 0.22 雄 553 39.20 24.90 0.64 99.80 21.08 0.21 对照群 全部 216 33.59 17.15 0.51 95.23 17.62 0.19 雌 99 33.76 17.56 0.52 95.74 17.68 0.18 雄 117 33.44 16.75 0.50 94.80 17.63 0.19 G2 选育群 全部 1281 39.61 27.13 0.68 99.43 21.72 0.22 雌 653 39.71 27.49 0.69 99.58 22.16 0.22 雄 628 39.52 26.77 0.68 99.27 21.30 0.21 对照群 全部 209 34.54 20.60 0.60 96.03 20.09 0.21 雌 116 35.06 20.36 0.60 95.50 20.38 0.21 雄 93 34.12 20.98 0.60 96.68 19.81 0.20 表 3 体质量与体长性状的正态性检验
Table 3. Normality test of body mass and body length
性状
Trait世代
GenerationW检验 W test 偏度
Skewness峰度
KurtosisStatistic df Sig. 体质量
Body mass/gG0 0.107 906 0.000 2.417±0.081 13.44±0.162 G1 0.113 1303 0.000 1.869±0.680 5.589±0.135 G2 0.124 1490 0.000 2.297±0.063 9.439±0.127 G0—G2 0.110 3699 0.000 2.186±0.040 9.089±0.080 体长
Body length/mmG0 0.047 906 0.000 0.388±0.081 0.300±0.162 G1 0.035 1303 0.001 0.529±0.068 0.355±0.135 G2 0.040 1490 0.000 0.581±0.063 0.378±0.127 G0—G2 0.037 3699 0.000 0.520±0.040 0.361±0.080 表 4 方差分量和遗传力
Table 4. Variance components and heritability
性状
Trait世代
Generation加性遗传方差
σa2环境方差
σc2残差方差
σe2表型方差
σp2遗传力
h2±SE体质量
Body mass/gG0 59.12 11.4 539.92 610.44 0.097±0.047** G1 70.11 2.89 522.33 595.33 0.118±0.066* G2 48.55 6.88 611.46 666.89 0.074±0.071 G0—G2 82.35 17.15 540.11 639.61 0.132±0.037** 体长
Body length/mmG0 70.21 23.15 328.57 421.93 0.176±0.325 G1 37.13 35.56 367.62 440.31 0.091±0.069 G2 37.52 15.56 341.33 394.41 0.099±0.068 G0—G2 47.93 23.67 346.51 418.11 0.122±0.043** 注:**. 极显著性水平(P<0.01);*. 显著性水平(P<0.05);下表同此。 Note: **. Extremely significant difference (P<0.01); *. Significance difference (P<0.05); the same case in the following table. 表 5 遗传相关和表型相关
Table 5. Genetic correlation and phenotypic correlation
世代
Generation遗传相关
Genetic correlation表型相关
Phenotypic correlationG0 0.764±0.00** 0.875±0.039** G1 0.781±0.00** 0.837±0.056** G2 0.757±0.00** 0.794±0.067** G0—G2 0.921±0.002** 0.995±0.004** 表 6 体质量和体长性状的遗传进展估计
Table 6. Estimation of predicted genetic gain for body mass and body length
性状
Trait世代
Generation群体
Population方法A
Method A方法B
Method B最小二乘值
Least squares
mean选择反应
Selection response平均育种值
Average
breeding
value选择反应
Selection response遗传获得
Genetic gain百分比
Percentage/%遗传获得
Genetic gain百分比
Percentage/%体质量
Body mass/gG0 选育群 39.95 −0.423 G1 选育群 41.57 3.23 8.42 1.467 1.89 4.92 对照群 38.34 G2 选育群 41.21 2.51 6.48 4.382 2.91 7.52 对照群 38.70 合计 Total 5.74 15.45 4.80 12.82 体长
Body length/
mmG0 选育群 99.6 −0.329 G1 选育群 101.7 4.2 4.27 0.723 1.05 1.07 对照群 97.5 G2 选育群 100.7 2.2 2.23 2.362 1.64 1.66 对照群 98.5 合计 Total 6.4 6.60 2.69 2.76 -
[1] 史君洁. 鲤种质分子鉴定技术构建[D]. 上海: 上海海洋大学, 2017: 5-6. [2] REN W, HU L, GUO L, et al. Preservation of the genetic diversity of a local common carp in the agricultural heritage rice-fish system[J]. PNAS, 2018: 546-554. [3] 支宇, 刘其根, 吴嘉敏, 等. 人工诱导青田田鱼雌核发育子代形态和遗传分析[J]. 上海海洋大学学报, 2022, 31(4): 839-848. [4] PENG J X, ZENG D G, HE P P, et al. mRNA and microRNA transcriptomics analyses in intermuscular bones of two carp species, rice flower carp (Cyprinus carpio var. Quanzhounensis) and Jian carp (Cyprinus carpio var. Jian)[J]. Comp Biochem Physiol D, 2019, 30: 71-80. [5] 鲁翠云, 杜雪松, 郑先虎, 等. 金边鲤群体的遗传结构及个体间遗传差异的QTL标记分析[J]. 淡水渔业, 2021, 51(4): 58-64. doi: 10.3969/j.issn.1000-6907.2021.04.008 [6] 李妹娟, 钟旭华, 梁开明, 等. 广东省稻鱼共生生态种养发展现状与对策建议[J]. 广东农业科学, 2021, 48(10): 111-120. [7] CHRISTOS P, MARTIN K, MARTIN P, et al. Accuracy of genomic evaluations of juvenile growth rate in common carp (Cyprinus carpio) using genotyping by sequencing[J]. Front Genet, 2018, 9: 82. doi: 10.3389/fgene.2018.00082 [8] 赵新春. 微卫星标记对鲤的两个育成品种遗传背景分析和遗传评价体系建立[D]. 上海: 上海海洋大学, 2015: 6-17. [9] 樊佳佳, 马冬梅, 朱华平, 等. F5 代禾花鲤形态性状对体质量的影响[J]. 广东农业科学, 2021, 48(8): 124-130. [10] 禾花鲤“乳源1号”[J]. 中国水产, 2021(10): 96-101. [11] 金万昆. 淡水养殖鱼类种质资源库[M]. 北京: 中国农业科学技术出版社, 2011: 42-45. [12] 吴志强, 李坚明. 推进稻渔生态种养, 促进广西农业绿色发展[J]. 广西农学报, 2019, 34(2): 1-5. doi: 10.3969/j.issn.1003-4374.2019.02.002 [13] SUI J, LUAN S, LUO K, et al. Genetic parameters and response to selection of harvest body weight of the Chinese shrimp Fenneropenaeus chinensis after five generations of multi-trait selection[J]. Aquaculture, 2016, 452: 134-141. doi: 10.1016/j.aquaculture.2015.08.011 [14] 于爱清. “新吉富”罗非鱼选育后期世代生长和遗传变异分析[D]. 上海: 上海海洋大学, 2011: 9-13. [15] 唐首杰, 何安元, 李思发, 等. “新吉富”罗非鱼选育后期世代F13—F15的生长性能比较研究[J]. 上海海洋大学学报, 2013, 22(1): 1-6. [16] 卢薛, 孙际佳, 王海芳, 等. 鳜鱼生长性状遗传参数的估计[J]. 中国水产科学, 2016, 23(6): 1268-1278. [17] 李祥孔, 田永胜, 李洪, 等. 牙鲆(Paralichthys olivaceus)家系生长性状遗传效应分析[J]. 渔业科学进展, 2017, 38(3): 39-50. doi: 10.11758/yykxjz.20160302003 [18] NEIRA R, LHORENTE J, ARANEDA C, et al. Studies on carcass quality traits in two populations of coho salmon (Oncorhynchus kisutch): phenotypic and genetic parameters[J]. Aquaculture, 2004, 241(14): 117-131. [19] WANG C H, LI S F, XIANG S P, et al. Genetic parameter estimates for growth-related traits in Oujiang color common carp (Cyprinus carpio var. color)[J]. Aquaculture, 2006, 259(14): 103-107. [20] 王俊, 匡友谊, 佟广香, 等. 不同温度下哲罗鲑幼鱼生长性状的遗传参数估计[J]. 中国水产科学, 2011, 18(1): 75-82. [21] 姜鹏, 韩林强, 白俊杰, 等. 草鱼生长性状的遗传参数和育种值估计[J]. 中国水产科学, 2018, 25(1): 18-25. [22] 金武, 李家乐, 付龙龙, 等. 三角帆蚌早期阶段生长性状遗传参数估计[J]. 水产学报, 2012, 36(8): 1209-1214. [23] 袁志发, 常智杰, 郭满才, 等. 数量性状遗传分析[M]. 北京: 科学出版社, 2015: 109-123. [24] 唐瞻杨, 陈文治, 罗永巨, 等. 尼罗罗非鱼不同月龄数量性状遗传力估计[J]. 海洋与湖沼, 2015, 46(5): 1180-1185. [25] 罗坤, 夏永涛, 王斌, 等. 俄罗斯鲟早期生长性状遗传参数的估计[J]. 中国水产科学, 2015, 22(3): 426-432. [26] HANNE M N, JØRGEN Ø, INGRID O, et al. Genetic analysis of common carp (Cyprinus carpio) strains: I: genetic parameters and heterosis for growth traits and survival[J]. Aquaculture, 2010, 304: 14-21. doi: 10.1016/j.aquaculture.2010.03.016 [27] 韦信键, 刘贤德, 王志勇. 32个大黄鱼家系早期阶段生长性状比较及遗传参数估计[J]. 集美大学学报 (自然科学版), 2013, 18(5): 321-328. [28] 曾聪, 曹小娟, 高泽霞, 等. 团头鲂生长性状的遗传力和育种值估计[J]. 华中农业大学学报, 2014, 33(2): 89-95. doi: 10.3969/j.issn.1000-2421.2014.02.017 [29] 苟盼盼, 王秀利, 窦冬雨, 等. 红鳍东方鲀不同家系群体的形态性状差异与相关性分析[J]. 大连海洋大学学报, 2019, 34(5): 674-679. [30] GJEDREM T. Genetic improvement of cold-water fish species[J]. Aquac Res, 2000, 31(1): 25-33. doi: 10.1046/j.1365-2109.2000.00389.x [31] CAMPOS E C, OLIVEIRA C, ARAÚJO F C T, et al. Genetic parameters and response to selection for growth in tambaqui[J]. Animal, 2020, 14(9): 1-9. [32] DONG Z, NGUYEN N H, ZHU W. Genetic evaluation of a selective breeding program for common carp Cyprinus carpio conducted from 2004 to 2014[J]. BMC Genet, 2015, 16(1): 94. doi: 10.1186/s12863-015-0256-2 [33] 马爱军, 王新安, 黄智慧, 等. 大菱鲆家系选育F2早期选择反应和现实遗传力估计[J]. 海洋与湖沼, 2012, 43(1): 57-61. doi: 10.11693/hyhz201201009009 [34] 莫日馆, 肖述, 秦艳平, 等. 深凹壳型香港牡蛎选育群体生长性状的遗传参数估计[J]. 水产学报, 2020, 44(1): 33-42. [35] BENTSEN H B, GJERDE B, EKNATH A E, et al. Genetic improvement of farmed tilapias: response to five generations of selection for increased body weight at harvest in Oreochromis niloticus and the further impact of the project[J]. Aquaculture, 2017, 468(1): 206-217. [36] THODESEN J, RYE M, WANG Y X, et al. Genetic improvement of tilapias in China: genetic parameters and selection responses in fillet traits of Nile tilapia (Oreochromis niloticus) after six generations of multi-trait selection for growth and fillet yield[J]. Aquaculture, 2012, 366/367: 67-75. doi: 10.1016/j.aquaculture.2012.08.028 [37] 鲁翠云, 李超, 曹顶臣, 等. 标记指导大规模混合家系选育技术应用实例[J]. 水产学杂志, 2019, 032(5): 8-12. doi: 10.3969/j.issn.1005-3832.2019.05.002 [38] 程磊, 何苹萍, 韦嫔媛, 等. 基于线粒体D-loop区和Cyt b基因分析广西禾花鲤三个群体遗传结构[J]. 水生生物学报, 2021, 45(1): 54-59. doi: 10.7541/2021.2020.041 -