Rapid determination of prometryn in aquatic products by QuEChERS combined with gas chromatography mass spectrometry
-
摘要: 以QuEChERS作为样品前处理手段,建立测定水产品中扑草净残留的气相色谱-质谱法 (GC-MS)。样品以乙腈-二氯甲烷 (V∶V=8∶2) 混合溶液提取,提取液经吸附剂中性氧化铝、N-丙基乙二胺 (PSA)、纳米二氧化锆结合石墨化炭黑 (GCB) 净化后上机检测,内标法定量。结果显示,扑草净质量浓度介于5~200 μg·L−1线性关系良好,相关系数 (R2) 为0.9999。对草鱼 (Ctenopharyngodon idellus)、鳜 (Siniperca chuatsi)、中国对虾 (Penaeus chinensis)、海参 (Holothuria sp.) 和文蛤 (Meretrix meretrix) 进行4个水平的加标回收实验 (10、20、40和200 µg·kg−1),方法的加标回收率为85.8%~111.8%,相对标准偏差为1.2%~8.8%,满足GB/T 27404—2008《实验室质量控制规范 食品理化检测》中实验室质量控制规范。扑草净的检出限 (LOD, S/N≥3) 和定量限 (LOQ, S/N≥10) 分别为5和10 µg·kg−1。该方法简单、快速、灵敏、净化效果好,能满足水产品中扑草净残留的检测需求。Abstract: A method was developed for the determination of prometryn in aquatic products by quick, easy, cheap, effective, rugged and safe (QuEChERS) extraction coupled with gas chromatography mass spectrometry. The samples were extracted by acetonitrile-dichloromethane mixture (V:V=8:2) and purified by neutral alumina, zirconium dioxide, PSA and GCB, quantified with internal standard. Good linearity was obtained in the range of 5.00−200 µg·L−1 with the correlation coeficient of 0.9999. The average recoveries were 85.8%−111.8% in Ctenopharyngodon idellus, Siniperca chuatsi, Penaeus chinensis, Holothuria sp. and Meretrix meretrix at four spiked levels of 10, 20, 40 and 200 µg·kg−1 with RSDS of 1.2%−8.8%, which meets the quality control specifications required in the national standard (GB/T 27404−2008 Criterion on Quality Control of Laboratories-Chemical Testing of Food). The limits of detection (S/N≥3) and quantification (S/N≥10) were 5.0 and 10.0 µg·kg−1, respectively. The method is suitable for the rapid determination of the prometryn residues in aquatic products owing to its advantages of simplicity, sensitivity, accuracy and better purification.
-
Key words:
- GC-MS /
- Prometryn /
- Aquatic products /
- QuEChERS /
- Isotope labeled internal standard
-
表 1 水产品中扑草净的加标回收率和相对标准偏差 (N=6)
Table 1. Spiked recoveries and relative standard deviations of aquatic product (N=6)
样品
Sample回收率 Average recovery/% 相对标准偏差 RSD/% 10 μg·kg−1 20 μg·kg−1 40 μg·kg−1 200 μg·kg−1 10 μg·kg−1 20 μg·kg−1 40 μg·kg−1 200 μg·kg−1 海参 Holothuria sp. 107.2 97.2 94.2 103.9 8.3 4.5 4.3 3.1 中国对虾 Penaeus chinensis 88.4 97.2 111.8 101.2 5.5 2.3 5.0 2.1 草鱼 Ctenopharyngodon idellus 86.6 106.4 102.7 100.2 5.6 3.3 8.8 4.1 鳜 Siniperca chuatsi 91.6 95.1 95.3 103.9 7.9 1.2 2.4 1.5 文蛤 Meretrix meretrix 92.2 85.8 101.5 100.0 7.0 3.9 3.7 2.7 -
[1] MEI M, HUANG X J, YANG X D, et al. Effective extraction of triazines from environmental water samples using magnetism-enhanced monolith-based in-tube solid phase microextraction[J]. Anal Chim Acta, 2016, 937: 69-79. doi: 10.1016/j.aca.2016.08.001 [2] 刘丽娟, 王玮云, 张华威, 等. 菲律宾蛤仔对扑草净的生物富集与消除规律[J]. 食品科学, 2016, 37(21): 252-256. doi: 10.7506/spkx1002-6630-201621043 [3] 桂英爱, 葛祥武, 孙程鹏, 等. 扑草净在环境和生物体内的降解代谢、毒性及安全性评价研究进展[J]. 大连海洋大学学报, 2019, 34(6): 846-852. [4] SANDERSON J T, LETCHER R J, HENEWEER M, et al. Effect of chloro-s-triazine herbicides and metabolites on aromatase activity in various human cell lines and on vitellogenin production in male carp hepatocytes[J]. Environ Health Perspect, 2001, 109(10): 1027-1031. doi: 10.1289/ehp.011091027 [5] 刘晔丽. 欧盟禁止使用320种农药涉及我国生产使用的63种[EB/OL]. (2004-02-19). http://news.sina.com.cn/c/2004-02-19/09391840156s.shtml. [6] 世界贸易组织卫生及植物卫生措施委员会. 扑草净(prometryn): 杀虫剂许可限量[EB/OL]. (2013-09-16). http://www.tbt-sps.gov.cn/tbcx/getTbcxContent.action?mid=14146&TBType=1. [7] 邹婉虹, 刘露, 孙涛, 等. 扑草净在我国养殖水产品中的残留及风险评估[J]. 中国渔业质量与标准, 2019, 9(6): 31-38. [8] ZHANG R H, DU J, DONG X B, et al. Occurrence and ecological risks of 156 pharmaceuticals and 296 pesticides in seawater from mariculture areas of northeast China[J]. Sci Total Environ, 2021, 792: 148375. doi: 10.1016/j.scitotenv.2021.148375 [9] LI L C H, YI Y, ZHENG G M, et al. Determination of multiclass herbicides in sediments and aquatic products using QuECHERS combined with ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) and its application to risk assessment of rice-fish co-culture system in China[J]. Microchem J, 2021, 170: 106628. doi: 10.1016/j.microc.2021.106628 [10] 朱晓华, 王凯, 张燚, 等. 固相萃取-气相色谱串联质谱法测定水产品中扑草净的残留[J]. 上海海洋大学学报, 2015, 24(6): 960-967. [11] 张华威, 刘慧慧, 田秀慧, 等. 凝胶色谱-固相萃取-气相色谱-串联质谱法测定水产品中9种三嗪类除草剂[J]. 质谱学报, 2015, 36(2): 177-184. doi: 10.7538/zpxb.youxian.2014.0054 [12] 鲁刚, 宗万里. 基于毛细管气相色谱法的花色蛤中扑草净残留量测定[J]. 成都大学学报, 2015, 34(4): 336-338. [13] 孙晓杰, 郭萌萌, 孙伟红, 等. QuEChERS在线凝胶色谱-气相色谱/质谱快速检测水产品中农药多残留[J]. 分析科学学报, 2014, 30(6): 868-872. [14] 李庆鹏, 秦达, 崔文慧, 等. 我国水产品中农药扑草净残留超标的警示分析[J]. 食品安全质量检测学报, 2014, 5(1): 108-112. [15] SUN S X, LI Y M, LI P, et al. Determinational of prometryn in vetiver grass and water using gas chromatography-nitrogen chemiluminescence detection[J]. J Chromatogr Sci, 2016, 54(2): 97-102. [16] TIAN H Z, FU H L, XU C Q, et al. Simultaneous determination of three herbicides in honey samples using an aqueous biphasic system coupled with HPLC-MS/MS[J]. Chromatographia, 2019, 82: 1571-1577. doi: 10.1007/s10337-019-03781-2 [17] PENG J, GAN J H, JU X Q, et al. Analysis of triazine herbicides in fish and seafood using a modified QuEChERS method followed by UHPLC-MS/MS[J]. J Chromatogr B, 2021, 1171: 122622. doi: 10.1016/j.jchromb.2021.122622 [18] BADUEL C H, MUELLER J F, TSAI H H, et al. Development of sample extraction and clean-up strategies for target and non-target analysis of environmental contaminants in biological matrices[J]. J Chromatogr A, 2015, 1426: 33-47. doi: 10.1016/j.chroma.2015.11.040 [19] MYDUL ISLAM A K M, NOH H H, RO J H, et al. Optimization and validation of a method for the determination of acidic pesticides in cabbage and spinach by modifying QuEChERS procedure and liquid chromatography-tandem mass spectrometry[J]. J Chromatogr B, 2021, 1173: 122667. doi: 10.1016/j.jchromb.2021.122667 [20] YU X L, LIU H, PU C J, et al. Determination of multiple antibiotics in leafy vegetables using QuEChERS-UHPLC-MS/MS[J]. J Sep Sci, 2018, 41(3): 713-722. doi: 10.1002/jssc.201700798 [21] HAN C H, HU B Z H, LI Z H, et al. Determination of fipronil and four metabolites in foodstuffs of animal origin using a modified QuEChERS method and GC-NCI-MS/MS[J]. Food Anal Methods, 2021, 14(2): 237-249. doi: 10.1007/s12161-020-01872-7 [22] 戴尽波, 沈洁, 何啸峰, 等. QuEChERS-超高效液相色谱-串联质谱法检测禽源性食品中氟虫腈及其代谢物[J]. 食品科学, 2021, 42(2): 325-332. doi: 10.7506/spkx1002-6630-20200620-275 [23] 马丽莎, 谢文平, 尹怡, 等. QuEChERS-高效液相色谱-串联质谱法测定稻田水产品中氟虫腈及其代谢物残留[J]. 食品科学, 2021, 42(14): 308-314. doi: 10.7506/spkx1002-6630-20200622-286 [24] HWANG S M, LEE H U, KIM J B, et al. Validation of analytical methods for organochlorine pesticide detection in shellfish and cephalopods by GC-MS/MS[J]. Food Sci Biotechnol, 2020, 29(8): 1053-1062. doi: 10.1007/s10068-020-00748-0 [25] 李丽春, 刘书贵, 尹怡. QuEChERS结合UPLC-MS/MS测定水产品中9种除草剂残留及基质效应[J]. 食品科学, 2020, 41(18): 258-266. [26] 屠瑞莹, 范赛, 张楠, 等. UPLC-MS/MS结合新型固相萃取技术快速确证猪肉中17种β-受体阻断剂[J]. 中国食品卫生杂志, 2021, 5: 571-577. [27] 杨云, 栾伟, 罗学军, 等. 微波辅助萃取-固相微萃取联用气相色谱-质谱法测定土壤中的扑草净[J]. 分析化学, 2004, 32(6): 775-778. doi: 10.3321/j.issn:0253-3820.2004.06.018 [28] 彭婕, 甘金华, 居小倩, 等. 超高效液相色谱-串联质谱法测定稻田水产品中毒死蜱残留[J]. 色谱, 2019, 37(7): 729-734. [29] WANG K, LIN K D, HUANG X W, et al. A simple and fast extraction method for the determination of multiclass antibiotics in eggs using LC-MS/MS[J]. J Agric Food Chem, 2017, 65(24): 5064-5073. doi: 10.1021/acs.jafc.7b01777 [30] 丁立平, 郭菁, 郑玲, 等. 多重吸附同步净化-气相色谱-质谱法测定干性样品中丁烯氟虫腈的残留量[J]. 色谱, 2013, 31(8): 747-752. [31] 姚凯, 薛云, 吴谦, 等. 二氧化锆包覆的二氧化硅核壳型填料的制备及其在选择性吸附磷脂中的应用研究[J]. 分析化学, 2013, 41(8): 1214-1219. [32] 刘进玺, 秦珊珊, 冯书惠, 等. 高效液相色谱-串联质谱法测定食用菌中农药多残留的基质效应[J]. 食品科学, 2016, 37(18): 171-177. doi: 10.7506/spkx1002-6630-201618028 [33] 徐雄, 李春梅, 孙静, 等. 我国重点流域地表水中29种农药污染及其生态风险评价[J]. 生态毒理学报, 2016, 11(2): 347-354. [34] DSIKOWITZKY L, NGUYEN T M I, KONZER L, et al. Occurrence and origin of triazine herbicides in a tropical coastal area in China: a potential ecosystem threat[J]. Estuar Coast Shelf S, 2020, 235: 106612. doi: 10.1016/j.ecss.2020.106612 -