留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于卵形鲳鲹基因组重测序的InDel标记挖掘与耐低氧性状关联分析

伞利择 刘宝锁 张楠 郭梁 郭华阳 朱克诚 张殿昌

伞利择, 刘宝锁, 张楠, 郭梁, 郭华阳, 朱克诚, 张殿昌. 基于卵形鲳鲹基因组重测序的InDel标记挖掘与耐低氧性状关联分析[J]. 南方水产科学, 2022, 18(5): 100-109. doi: 10.12131/20210347
引用本文: 伞利择, 刘宝锁, 张楠, 郭梁, 郭华阳, 朱克诚, 张殿昌. 基于卵形鲳鲹基因组重测序的InDel标记挖掘与耐低氧性状关联分析[J]. 南方水产科学, 2022, 18(5): 100-109. doi: 10.12131/20210347
SAN Lize, LIU Baosuo, ZHANG Nan, GUO Liang, GUO Huayang, ZHU Kecheng, ZHANG Dianchang. Mining of InDel marker and association analysis of hypoxia tolerance traits in Trachinotus ovatus based on resequencing[J]. South China Fisheries Science, 2022, 18(5): 100-109. doi: 10.12131/20210347
Citation: SAN Lize, LIU Baosuo, ZHANG Nan, GUO Liang, GUO Huayang, ZHU Kecheng, ZHANG Dianchang. Mining of InDel marker and association analysis of hypoxia tolerance traits in Trachinotus ovatus based on resequencing[J]. South China Fisheries Science, 2022, 18(5): 100-109. doi: 10.12131/20210347

基于卵形鲳鲹基因组重测序的InDel标记挖掘与耐低氧性状关联分析

doi: 10.12131/20210347
基金项目: 国家自然科学基金项目 (U20A2064);财政部和农业农村部: 国家海水鱼产业技术体系资助 (CARS-47);国家重点研发计划项目 (2018YFD0900301);中国水产科学研究院中央级公益性科研院所基本科研业务费专项资金资助 (2020TD29)
详细信息
    作者简介:

    伞利择 (1996—),男,硕士研究生,研究方向为水产动物遗传育种。E-mail: cdsanlz@163.com

    通讯作者:

    张殿昌 (1977—),男,研究员,博士,从事水产种质资源与遗传育种研究。E-mail: zhangdch@scsfri.ac.cn

  • 中图分类号: S 917.4

Mining of InDel marker and association analysis of hypoxia tolerance traits in Trachinotus ovatus based on resequencing

  • 摘要: 卵形鲳鲹 (Trachinotus ovatus) 是高耗氧率的鱼类,低氧极易导致其死亡。筛选其耐低氧性状InDel分子标记并挖掘影响耐低氧性状的功能基因,可为选育具有较强耐低氧能力的卵形鲳鲹提供有益指导。利用全基因组重测序技术分析了卵形鲳鲹基因InDel差异,挖掘卵形鲳鲹与耐低氧性状显著关联的InDel位点,并探讨了与耐低氧性状相关的候选基因。结果表明,测序共获得693.48 Gb数据,其中Q30的平均值为90.8%,注释分析发现了共2 574 178个InDel位点。敏感组50尾卵形鲳鲹所特有的InDel共249 395个,其中2 209个位于外显子上,在核苷酸切除修复信号通路和细胞黏着分子中存在变异基因。将InDel位点与耐低氧性状关联分析发现,3个InDel位点 (InDel 22883061、InDel 24919481和InDel 14451779) 接近显著性阈值,注释分析获得了9个候选基因。筛选到的InDel位点对后期分子标记选择育种的选择和鉴定有重要价值,注释到的候选基因为卵形鲳鲹耐低氧的机理研究提供了基础和依据。
  • 图  1  卵形鲳鲹基因组 GC含量和测序质量分布图

    Figure  1.  GC content and sequence quality in T.ovatus

    图  2  InDel在基因组上的分布位置

    Figure  2.  Region of InDel on genome

    图  3  InDel在基因组上的分布密度

    Figure  3.  Distribution density of InDel on genome

    图  4  KEGG富集分析

    Figure  4.  KEGG enrichment scatter plot

    图  5  100尾卵形鲳鲹亲缘关系热图 (a)、主成分分析 (b)、耐低氧性状全基因组关联分析的QQ图 (c) 和曼哈顿图 (d)

    Figure  5.  Heat map of genetic relationship (a), principal component analysis (b), Q-Q plot (c) and Manhattan plot (d) of genome-wide association analysis for low oxygen tolerance of 100 individuals of T. ovatus

    表  1  鉴定到的不同长度InDel的数量

    Table  1.   Number of InDels of different sizes identified

    InDel类型
    InDel Type
    InDel大小
    InDel Size/bp
    数量
    Number
    百分比
    Percentage/%
    InDel类型
    InDel Type
    InDel大小
    InDel Size/bp
    数量
    Number
    百分比
    Percentage/%
    插入 Insertion 1 496002 44.94 缺失 Deletion 1 532256 37.7
    2 189179 17.14 2 292212 20.7
    3 58625 5.31 3 107471 7.6
    4 69620 6.31 4 106766 7.6
    5 23055 2.09 5 43919 3.1
    6 43192 3.91 6 62130 4.4
    7 13832 1.25 7 27167 1.9
    8 28729 2.60 8 39844 2.8
    9 11719 1.06 9 20564 1.5
    10 20236 1.83 10 27837 2.0
    ≥11 149421 13.54 ≥11 152545 10.8
    总计 Total    1103610 总计 Total    1412711
    下载: 导出CSV

    表  2  变异基因GO功能分类注释

    Table  2.   GO classification of mutated genes

    类别
    Classification
    条目
    Term
    变异基因数量
    Number of
    variant genes
    细胞组分
    Cellular component
    染色体 7
    顶体泡 6
    线粒体外膜 4
    电压门控钾离子通道复合物 3
    肌间盘 3
    分子功能
    Molecular function
    核酸结合 11
    GTP结合 8
    电压门控离子通道活性 5
    镁离子结合 5
    转录辅抑制活性 5
    生物过程
    Biological process
    细胞对DNA损伤刺激的反应 7
    Wnt信号通路 6
    细胞器组织 6
    骨骼肌组织发育 5
    DNA整合 5
    下载: 导出CSV
  • [1] PAERL H W, OTTEN T G. Harmful cyanobacterial blooms: causes, consequences, and controls[J]. Microb Ecol, 2013, 65(4): 995-1010. doi: 10.1007/s00248-012-0159-y
    [2] YIN F, GONG H, KE Q, et al. Stress, antioxidant defence and mucosal immune responses of the large yellow croaker Pseudosciaena crocea challenged with Cryptocaryon irritans[J]. Fish Shellfish Immunol, 2015, 47(1): 344-351. doi: 10.1016/j.fsi.2015.09.013
    [3] MOREIRA M, SCHRAMA D, SOARES F, et al. Physiological responses of reared sea bream (Sparus aurata Linnaeus, 1758) to an Amyloodinium ocellatum outbreak[J]. J Fish Dis, 2017, 40(11): 1545-1560. doi: 10.1111/jfd.12623
    [4] ONUKWUFOR J O, WOOD C M. The osmorespiratory compromise in rainbow trout (Oncorhynchus mykiss): the effects of fish size, hypoxia, temperature and strenuous exercise on gill diffusive water fluxes and sodium net loss rates[J]. Comp Biochem Physiol A, 2018, 219: 10-8.
    [5] OBIRIKORANG K A, ACHEAMPONG J N, DUODU C P, et al. Growth, metabolism and respiration in Nile tilapia (Oreochromis niloticus) exposed to chronic or periodic hypoxia[J]. Comp Biochem Physiol A, 2020, 248: 110768. doi: 10.1016/j.cbpa.2020.110768
    [6] POULSEN S B, JENSEN L F, NIELSEN K S, et al. Behaviour of rainbow trout Oncorhynchus mykiss presented with a choice of normoxia and stepwise progressive hypoxia[J]. J Fish Biol, 2011, 79(4): 969-979. doi: 10.1111/j.1095-8649.2011.03069.x
    [7] WOOD A T, CLARK T D, ELLIOTT N G, et al. The effects of constant and cyclical hypoxia on the survival, growth and metabolic physiology of incubating Atlantic salmon (Salmo salar)[J]. Aquaculture, 2020, 527: 735449. doi: 10.1016/j.aquaculture.2020.735449
    [8] SOLLID J, de ANGELIS P, GUNDERSEN K, et al. Hypoxia induces adaptive and reversible gross morphological changes in crucian carp gills[J]. J Exp Biol, 2003, 206(20): 3667-3673. doi: 10.1242/jeb.00594
    [9] MITROVIC D, DYMOWSKA A, NILSSON G E, et al. Physiological consequences of gill remodeling in goldfish (Carassius auratus) during exposure to long-term hypoxia[J]. Am J Physiol Regul Integr Comp Physiol, 2009, 297(1): R224-234. doi: 10.1152/ajpregu.00189.2009
    [10] WU C B, LIU Z Y, LI F G, et al. Gill remodeling in response to hypoxia and temperature occurs in the hypoxia sensitive blunt snout bream (Megalobrama amblycephala)[J]. Aquaculture, 2017, 479: 479-486. doi: 10.1016/j.aquaculture.2017.06.020
    [11] MUNEER P M A, SIVANANDAN R, GOPALAKRISHNAN A, et al. Development and characterization of RAPD and microsatellite markers for genetic variation analysis in the critically endangered yellow catfish Horabagrus nigricollaris (Teleostei: Horabagridae)[J]. Biochem Genet, 2011, 49(1/2): 83-95.
    [12] WATANABE T, YOSHIDA M, NAKAJIMA M, et al. Linkage mapping of AFLP and microsatellite DNA markers with the body color-and sex-determining loci in the guppy (Poecilia reticulata)[J]. Zool Sci, 2005, 22(8): 883-889. doi: 10.2108/zsj.22.883
    [13] POOMPUANG S, NA-NAKORN U. A preliminary genetic map of walking catfish (Clarias macrocephalus)[J]. Aquaculture, 2004, 232(1/2/3/4): 195-203.
    [14] LEI D J, ZHAO G, XIE P, et al. Analysis of genetic diversity of Leuciscus leuciscus baicalensis using novel microsatellite markers with cross-species transferability[J]. Genet Mol Res, 2017, 16(2): 16029376.
    [15] TSAI H Y, HAMILTON A, TINCH A E, et al. Genome wide association and genomic prediction for growth traits in juvenile farmed Atlantic salmon using a high density SNP array[J]. BMC Genom, 2015, 16: 969. doi: 10.1186/s12864-015-2117-9
    [16] TSAI H Y, HAMILTON A, TINCH A E, et al. Genomic prediction of host resistance to sea lice in farmed Atlantic salmon populations[J]. Genet Sel Evol, 2016, 48(1): 47. doi: 10.1186/s12711-016-0226-9
    [17] JIN Y, ZHOU T, GENG X, et al. A genome-wide association study of heat stress-associated SNPs in catfish[J]. Anim Genet, 2017, 48(2): 233-236. doi: 10.1111/age.12482
    [18] CHEN F, LAI F L, LUO M J, et al. The genome-wide landscape of small insertion and deletion mutations in Monopterus albus[J]. J Genet Genom, 2019, 46(2): 75-86. doi: 10.1016/j.jgg.2019.02.002
    [19] VASEMAGI A, GROSS R, PALM D, et al. Discovery and application of insertion-deletion (INDEL) polymorphisms for QTL mapping of early life-history traits in Atlantic salmon[J]. BMC Genom, 2010, 11: 156. doi: 10.1186/1471-2164-11-156
    [20] BRITTEN R J, ROWEN L, WILLIAMS J, et al. Majority of divergence between closely related DNA samples is due to InDels[J]. Proc Nat Acad Sci USA, 2003, 100(8): 4661-4665. doi: 10.1073/pnas.0330964100
    [21] ROCKAH-SHMUEL L, TOTH-PETROCZY A, SELA A, et al. Correlated occurrence and bypass of frame-shifting insertion-deletions (InDels) to give functional proteins[J]. PLOS Genet, 2013, 9(10): e1003882. doi: 10.1371/journal.pgen.1003882
    [22] 罗林. 奶牛乳脂性状候选基因SNP及InDel位点筛选及其与产奶性状关联分析[D]. 大庆: 黑龙江八一农垦大学, 2021: 4-8.
    [23] 岳晓鹏. 基于甘蓝型油菜基因组重测序开发InDel标记[D]. 武汉: 华中农业大学, 2014: 6.
    [24] 陈静, 何吉祥, 樊佳佳, 等. 草鱼MyoD基因SNP和InDel标记的筛选及其与生长性状的关联分析[J]. 江苏农业学报, 2018, 34(3): 612-616. doi: 10.3969/j.issn.1000-4440.2018.03.019
    [25] CHEN S, ZHOU Y, CHEN Y, et al. Fastp: an ultra-fast all-in-one FASTQ preprocessor[J]. Bioinformatics, 2018, 34(17): 884-890. doi: 10.1093/bioinformatics/bty560
    [26] MCKENNA A, HANNA M, BANKS E, et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data[J]. Genome Res, 2010, 20(9): 1297-1303. doi: 10.1101/gr.107524.110
    [27] CINGOLANI P, PATEL V M, COON M, et al. Using Drosophila melanogaster as a model for genotoxic chemical mutational studies with a new program, SnpSift[J]. Front Genet, 2012, 3: 35.
    [28] WANG K, LI M Y, HAKONARSON H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data[J]. Nucleic Acids Res, 2010, 38(16): e164. doi: 10.1093/nar/gkq603
    [29] PURCELL S, NEALE B, TODD-BROWN K, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses[J]. Am J Human Genet, 2007, 81(3): 559-575. doi: 10.1086/519795
    [30] YANG J, LEE S H, GODDARD M E, et al. GCTA: a tool for genome-wide complex trait analysis[J]. Am J Human Genet, 2011, 88(1): 76-82. doi: 10.1016/j.ajhg.2010.11.011
    [31] ZHOU X, STEPHENS M. Genome-wide efficient mixed-model analysis for association studies[J]. Nature Genet, 2012, 44(7): 821-824. doi: 10.1038/ng.2310
    [32] ZHONG X, WANG X, ZHOU T, et al. Genome-wide association study reveals multiple novel QTL associated with low oxygen tolerance in hybrid catfish[J]. Mar Biotechnol (NY), 2017, 19(4): 379-390. doi: 10.1007/s10126-017-9757-5
    [33] WANG X, LIU S, JIANG C, et al. Multiple across-strain and within-strain QTLs suggest highly complex genetic architecture for hypoxia tolerance in channel catfish[J]. Mol Genet Genom, 2017, 292(1): 63-76. doi: 10.1007/s00438-016-1256-2
    [34] 杨洁, 赫佳, 王丹碧, 等. InDel标记的研究和应用进展[J]. 生物多样性, 2016, 24(2): 237-243. doi: 10.17520/biods.2015205
    [35] SAN L Z, LIU B S, LIU B, et al. Genome-wide association study reveals multiple novel SNPs and putative candidate genes associated with low oxygen tolerance in golden pompano Trachinotus ovatus (Linnaeus 1758)[J]. Aquaculture, 2021, 544: 737098. doi: 10.1016/j.aquaculture.2021.737098
    [36] 王慧芳, 周光现, 孙永峰, 等. 基于全基因组重测序技术的狮头鹅InDel标记分析[J]. 畜牧兽医学报, 2021, 52(3): 662-675. doi: 10.11843/j.issn.0366-6964.2021.03.010
    [37] 吴迷, 汪念, 沈超, 等. 基于重测序的陆地棉InDel标记开发与评价[J]. 作物学报, 2019, 45(2): 196-203.
    [38] 常玉晓. 水稻T-DNA插入突变体侧翼序列的分离和水稻DNA复制蛋白RPA1a及RPA2-3基因的功能研究[D]. 武汉: 华中农业大学, 2010: 16-20.
    [39] 黄芳. 斑马鱼DNA聚合酶Delta四亚基和相关因子的制备鉴定及赤点石斑鱼IκBα基因的克隆与功能分析[D]. 镇江: 江苏大学, 2016: 3-8.
    [40] ZEBDA N, DUBROVSKYI O, BIRUKOV K G. Focal adhesion kinase regulation of mechanotransduction and its impact on endothelial cell functions[J]. Microvasc Res, 2012, 83(1): 71-81. doi: 10.1016/j.mvr.2011.06.007
    [41] 黄智康, 江世贵, 周发林, 等. 基于InDel标记的斑节对虾早期性别鉴定方法的建立[J]. 南方水产科学, 2020, 16(3): 113-118. doi: 10.12131/20190222
    [42] 牛姣姣. 芝麻枯萎病抗性关联分析[D]. 南京: 南京农业大学, 2014: 24-43.
    [43] 薛蕾. 山羊InDels筛选鉴定及其与生产性状关联分析[D]. 重庆: 西南大学, 2018: 30-33.
    [44] YANG Z L, ZOU L Q, SUN T T, et al. Genome-wide association study using whole-genome sequencing identifies a genomic region on chromosome 6 associated with comb traits in Nandan-Yao chicken[J]. Front Genet, 2021, 12: 682501. doi: 10.3389/fgene.2021.682501
    [45] ELLIS J M, WONG W, WOLFGANG M J. Acyl coenzyme a thioesterase 7 regulates neuronal fatty acid metabolism to prevent neurotoxicity[J]. Mol Cell Biol, 2013, 33(9): 1869-1882. doi: 10.1128/MCB.01548-12
    [46] MAEKAWA R, MUTO H, HATAYAMA M, et al. Dysregulation of erythropoiesis and altered erythroblastic NMDA receptor-mediated calcium influx in Lrfn2-deficient mice[J]. PLOS ONE, 2021, 16(1): e0245624. doi: 10.1371/journal.pone.0245624
    [47] FORSTER J R, LOCHNIT G, STOHR H. Proteomic analysis of the membrane palmitoylated protein-4 (MPP4)-associated protein complex in the retina[J]. Exp Eye Res, 2009, 88(1): 39-46. doi: 10.1016/j.exer.2008.09.016
    [48] RUIZ-HERNANDEZ A, ROMERO-NAVA R, HUANG F Y, et al. Altered function and expression of the orphan GPR135 at the cardiovascular level in diabetic Wistar rats[J]. J Recept Sig Transd, 2018, 38(5/6): 484-491.
    [49] GROS-LOUIS F, KRIZ J, KABASHI E, et al. Als2 mRNA splicing variants detected in KO mice rescue severe motor dysfunction phenotype in Als2 knock-down zebrafish[J]. Human Mol Genet, 2008, 17(17): 2691-2702. doi: 10.1093/hmg/ddn171
    [50] HUANG L J, SZYMANSKA K, JENSEN V L, et al. TMEM237 is mutated in individuals with a joubert syndrome related disorder and expands the role of the TMEM family at the ciliary transition zone[J]. Am J Human Genet, 2011, 89(6): 713-730. doi: 10.1016/j.ajhg.2011.11.005
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  520
  • HTML全文浏览量:  151
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-24
  • 修回日期:  2022-02-06
  • 录用日期:  2022-02-18
  • 网络出版日期:  2022-03-03
  • 刊出日期:  2022-10-05

目录

    /

    返回文章
    返回