Geostatistics-based study on spatial-temporal distribution of Auxis thazard in South China Sea
-
摘要: 为了研究南海扁舵鲣 (Auxis thazard) 的时空分布情况,根据2016—2017年对南海开展的4个航次的灯光罩网渔业调查数据,采用地统计学方法分析扁舵鲣时空分布特征和相关生态动力过程。结果表明,南海扁舵鲣总体分布以低密度为主,高密度海域较少,近岸浅水海域季节性聚集特征明显,资源密度指数依次为夏季>春季>秋季;扁舵鲣渔场空间分布具有较强的空间异质性,4个航次的空间结构性比例均大于75%,变异模型以球面模型为主,平均主变程为1.861 0°;南海扁舵鲣明显具有从西南—东北洄游的特征,空间布局呈片状和斑块状。本研究结果可为扁舵鲣渔场分析与渔业管理提供科学依据。Abstract: In order to study the spatial-temporal distribution characteristics of Auxis thazard, we analyzed the spatial-temporal distribution characteristics and ecological dynamics of Auxis thazard by geostatistical methods based on the data from the light falling-net fishery survey conducted in the South China Sea from 2016 to 2017. The results show that the distribution of A. thazard in the South China Sea was of mainly low-density, and there were few high-density sea areas. The seasonal aggregation characteristics of A. thazard in the offshore shallow waters were obvious, and the resource density index followed a descending order of summer>spring>autumn. The spatial distribution of A. thazard fishery had strong spatial heterogeneity, with the proportion of spatial structure over 75% in the four voyages. The spherical model was the main variation model, and the average main variation range was 1.861 0°. The A. thazard in the South China Sea was obviously characterized by southwest-northeast migration, and its spatial layout had a patch-like spatial distribution. The results can better reflect the spatial-temporal distribution characteristics of the A. thazard fishery in the South China Sea, which provides a scientific basis for its fishery analysis and management.
-
Key words:
- Auxis thazard /
- Geostastistics /
- Spatial heterogeneity /
- Index of stock density /
- South China Sea
-
表 1 各航次数据W-S正态性检验
Table 1. W-S normality test of each voyage
航次
Voyage季节
SeasonP 转换后P
P for conversion1 春 0.002 0.884 2 秋 0.046 0.521 3 春 0.000 0.091 4 夏 0.000 0.153 注:P>0.05,该组数据具备正态特征。 Note: P>0.05. The set of data has normality. 表 2 扁舵鲣调查数据基本统计参数
Table 2. Basic statistical parameters of survey data of A. thazard
航次
Voyage最小值
Min.最大值
Max.均值
Mean标准偏差
Standard error方差
Variance偏度
Skewness峰度
KurtosisCV=S/m 1 0.003 7 1.500 0 0.326 8 0.520 7 0.271 0 2.074 0 4.153 0 1.593 3 2 0.019 7 1.000 0 0.349 2 0.307 2 0.094 0 1.218 0 0.582 0 0.879 7 3 0.001 4 1.000 0 0.120 7 0.245 6 0.060 0 3.235 0 10.654 0 2.034 2 4 0.000 1 1.000 0 0.183 4 0.292 3 0.085 0 2.060 0 3.547 0 1.594 0 表 3 各航次扁舵鲣资源变异函数参数
Table 3. Variation function parameters of A. thazard resources in each voyage
航次
Voyage最优模型
Optimum model块金值
Nugget基台值
Sill变程
Range块金系数
Nugget/Sill1 球状模型 0.013 0 0.810 0 1.870 0 0.016 0 2 高斯模型 0.000 1 0.250 2 1.073 9 <0.000 1 3 球状模型 0.035 0 0.452 0 2.410 0 0.077 0 4 球状模型 0.006 0 1.230 0 2.090 0 0.005 0 表 4 各航次南海扁舵鲣CPUE重心的置信区间 (95%)
Table 4. Confidence interval for center of gravity of A. thazard of each voyage (95%)
航次
Voyage纬度
Longitude/(°N)置信区间
Confidence interval/(°N)经度
Latitude/(°E)置信区间
Confidence interval/(°E)1 10.565 9 [9.978 4, 11.629 7] 115.362 5 [112.624 7, 115.279 2] 2 11.702 4 [10.711 8, 12.283 1] 113.272 6 [113.008 2, 115.207 4] 3 11.495 8 [11.140 2, 12.613 5] 114.671 4 [112.921 6, 114.777 5] 4 11.936 8 [11.095 3, 12.400 5] 114.144 3 [112.552 8, 113.921 2] -
[1] 孔啸兰, 晏磊, 张鹏, 等. 南海扁舵鲣生物学特性的初步研究[J]. 南方水产科学, 2015, 11(5): 100-107. doi: 10.3969/j.issn.2095-0780.2015.05.012 [2] 张俊, 邱永松, 陈作志, 等. 南海外海大洋性渔业资源调查评估进展[J]. 南方水产科学, 2018, 14(6): 118-127. doi: 10.12131/20180037 [3] 金显仕, 窦硕增, 单秀娟, 等. 我国近海渔业资源可持续产出基础研究的热点问题[J]. 渔业科学进展, 2015, 36(1): 124-131. doi: 10.11758/yykxjz.20150119 [4] 李建生, 李圣法, 丁峰元, 等. 长江口近海鱼类多样性的年际变化[J]. 中国水产科学, 2007, 14(4): 637-643. doi: 10.3321/j.issn:1005-8737.2007.04.016 [5] 王跃中, 袁蔚文. 南海北部底拖网渔业资源的数量变动[J]. 南方水产, 2008, 4(2): 26-33. [6] 葛剑平, 郭海燕, 仲莉娜. 地统计学在生态学中的应用 (Ⅰ)——基本理论和方法[J]. 东北林业大学学报, 1995, 23(2): 88-94. [7] 陈新军, 方学燕, 杨铭霞, 等. 地统计学在海洋渔业中的应用[M]. 北京: 科学出版社, 2019: 1-189. [8] AMIN O M, HECKMANN R A, DALLARÉS S, et al. Morphological and molecular description of Rhadinorhynchus laterospinosus Amin, Heckmann & Ha, 2011 (Acanthocephala, Rhadinorhynchidae) from marine fish off the Pacific coast of Vietnam[J]. PARASITE, 2019, 26(14): 1-20. [9] 张月平, 陈丕茂, 梁小芸. 南海珊瑚礁周围过渡性水域主要鱼类食性与食物的关系[J]. 中国海洋大学学报 (自然科学版), 2006, 36(4): 635-638. [10] 李敏, 张鹏, 李玉芳, 等. 南海扁舵鲣种群遗传结构和遗传多样性评价[J], 南方水产科学, 2015, 11(5): 82-89. [11] 张衡, 吴祖立, 周为峰, 等. 南海南沙群岛灯光罩网渔场金枪鱼科渔获种类、渔获率及其峰值期[J]. 海洋渔业, 2016, 38(2): 140-148. doi: 10.3969/j.issn.1004-2490.2016.02.004 [12] 张仁斋. 西沙群岛附近海区金枪鱼类仔稚鱼的调查研究报告[J]. 水产学报, 1981, 5(4): 301-315. [13] NISHIDA T, CHEN D G. Incorporating spatial autocorrelation into the general linear model with an application to the yellowfin tuna (Thunnus albacares) longline CPUE data[J]. Fish Res, 2004, 69(2): 265-274. [14] 李晓晖, 袁峰, 白晓宇, 等. 典型矿区非正态分布土壤元素数据的正态变换方法对比研究[J]. 地理与地理信息科学, 2010, 26(6): 102-105. [15] 张仁铎. 空间变异理论及应用[M]. 北京: 科学出版社, 2005: 1-11. [16] 汤国安, 杨昕. ArcGIS地理信息系统空间分析实验教程[M]. 北京: 科学出版社, 2012: 419-477. [17] MITCHELL A. The ESRI guide to GIS analysis, Volume 1[M]. 2nd ed. California: ESRI Press, 2020: 1-300. [18] 刘爱利, 王培法, 丁园圆. 地统计学概论[M]. 北京: 科学出版社, 2012: 74-95. [19] 冯永玖, 方学燕, 陈新军, 等. 基于GIS的西北太平洋柔鱼资源空间插值及不确定性分析[J]. 资源科学, 2015, 37(11): 2299-2308. [20] 莫跃爽, 索惠英, 焦树林, 等. 喀斯特地区降水量空间插值方法对比——以贵州省为例[J]. 水土保持研究, 2021, 28(1): 164-170. [21] GARRISON L P. Spatial patterns in species composition in the Northeast United States continental shelf fish community during 1966‒1999[C]. Spatial processes and management of marine population. Alaska: University of Alaska Sea Grant, 2001: 513-559. [22] 刘禹希, 王学锋, 陈国宝, 等. 南海北部海域大眼鲷资源的时空异质性[J]. 水产学报, 2019, 43(12): 2523-2532. [23] 张红艳, 高如泰, 江树人, 等. 北京市农田土壤中有机氯农药残留的空间分析[J]. 中国农业科学, 2006, 39(7): 1403-1410. doi: 10.3321/j.issn:0578-1752.2006.07.015 [24] 卢振彬, 颜尤明, 戴泉水. 闽中、闽东渔场扁舵鲣的资源生物学[J]. 台湾海峡, 1992, 11(3): 251-256. [25] 方学燕, 冯永玖, 陈新军, 等. 6-9月秘鲁外海茎柔鱼资源的空间异质性研究[J]. 上海海洋大学学报, 2016, 25(2): 271-281. [26] 杨晓明, 戴小杰, 朱国平. 基于地统计分析西印度洋黄鳍金枪鱼围网渔获量的空间异质性[J]. 生态学报, 2012, 32(15): 4682-4690. [27] 苏奋振, 周成虎, 史文中, 等. 东海区底层及近底层鱼类资源的空间异质性[J]. 应用生态学报, 2004, 15(4): 683-686. doi: 10.3321/j.issn:1001-9332.2004.04.029 [28] 张寒野, 程家骅. 东海区小黄鱼空间格局的地统计学分析[J]. 中国水产科学, 2005, 12(4): 50-54. [29] 赵传絪, 陈思行. 金枪鱼类和金枪鱼渔业[M]. 北京: 海洋出版社, 1983: 135-136. [30] 张仁斋. 三种金枪鱼类 (鲣、黄鳍金枪鱼、扁舵鲣) 的仔、稚鱼在南海的分布和产卵期[J]. 海洋学报 (中文版), 1983, 5(3): 368-375. [31] REN Y Z, YIN J Q, TAN Y H, et al. Monsoon-driven seasonal and spatial distribution of the copepod community along the northwest continental shelf of the South China Sea[J]. J Mar Syst, 2021, 218: 103529. doi: 10.1016/j.jmarsys.2021.103529 [32] HENDERSON K A, MURDOCK J, LIZOTTE R. Water depth influences algal distribution and productivity in shallow agricultural lakes[J]. Ecohydrology, 2021, 14(6): e2319. [33] 陈新军. 渔业资源与渔场学[M]. 2版. 北京: 海洋出版社, 2014: 184-215. [34] 郝锵. 中国近海叶绿素和初级生产力的时空分布特征和环境调控机制研究[D]. 青岛: 中国海洋大学, 2010: 32-48. [35] 樊伟, 程炎宏, 沈新强. 全球环境变化与人类活动对渔业资源的影响[J]. 中国水产科学, 2001, 8(4): 91-94. doi: 10.3321/j.issn:1005-8737.2001.04.021 [36] LEHODEY P, BERTIGNAC M, HAMPTON J, et al. El Nino Southern Oscillation and tuna in the western Pacific[J]. Nature, 1997, 389(6652): 715-718. doi: 10.1038/39575 [37] CHEN Y L, SHAN X J, JIN X S, et al. A comparative study of spatial interpolation methods for determining fishery resources density in the Yellow Sea[J]. Acta Oceanol Sin, 2016, 35(12): 65-72. doi: 10.1007/s13131-016-0966-y [38] PAN S Y, TIAN S Q, WANG X F, et al. Comparing different spatial interpolation methods to predict the distribution of fishes: a case study of Coilia nasus in the Changjiang River Estuary[J]. Acta Oceanol Sin, 2021, 40(8): 119-132. doi: 10.1007/s13131-021-1789-z [39] LIU Z L, YAN T F. Comparison of spatial interpolation methods based on ArcGIS[J]. J Phys Conf Ser, 2021, 1961(1): 12-50. [40] 孙铭帅, 陈作志, 蔡研聪, 等. 空间插值法在北部湾渔业资源密度评估中的应用[J]. 中国水产科学, 2017, 24(4): 853-861. [41] WANG J T, BOENISH R, CHEN X J, et al. The effects of spatio-temporal scale on commercial fishery abundance index suitability[J]. ICES J Mar Sci, 2021, 78(7): 2506-2517. doi: 10.1093/icesjms/fsab126 [42] 陈清霞, 涂成龙, 陆晓辉, 等. 贵州省旱地黄壤Zn和有机质的空间异质性特征[J]. 环境科学学报, 2021, 41(10): 1-9. -