Preparation and characterization of S-nitrosated sodium alginate antibacterial hydrogel
-
摘要: 一氧化氮 (NO) 是一种具有高细菌抑制率的气体信号分子,被广泛用于生物医学治疗当中,但是目前还存在如NO供体材料生物相容性差、NO负载量低以及控释缓释效果不佳等问题。以我国盛产的海藻多糖海藻酸钠 (SA) 为原料,制备了巯基化海藻酸钠 (SA-SH) 和NO供体S-亚硝基海藻酸钠 (SA-SNO),并以不同比例复合SA-SH与SA-SNO制备了原位成型水凝胶。结果表明随着SA-SNO含量的增加,NO负载量显著增加;释放曲线表明该凝胶具有较长的释放周期,5 d后NO释放量高达30.12~44.32 μmol·g−1,总释放量为152~264 µmol·mg−1。抗菌实验表明水凝胶对金黄色葡萄球菌 (Staphylococcus aureus)、大肠杆菌 (Escherichia coli) 具有显著抑制作用。综上所述,研究制备的水凝胶具有作为伤口抗菌敷料的应用潜力。Abstract: Nitric oxide (NO) is a gas signaling molecule with high bacterial inhibition rate, which has been widely used in biomedical treatment. However, there are still problems such as poor biocompatibility of NO donor materials, low NO load, poor control release and slow-release effect. In this study, we used an aquatic polysaccharide material, sodium alginate (SA), to prepare sulfhydryl sodium alginate (SA-SH) and NO donor S-nitroso sodium alginate (SA-SNO), and prepared in-situ formed hydrogel by using different ratios of SA-SH and SA-SNO. The results show that the NO loading in the hydrogels increased with the increasing content of SA-SNO, and the release curve indicates that the gel possessed long-lasting release effects, wherein the releasing amount of NO arrived to 30.12−44.32 μmol·g−1 even after 5 d and the total release amount was 152−264 μmol·g−1. Additionally, antibacterial experiments show that the hydrogel had a significant inhibitory effect on Staphylococcus aureus and Escherichia coli. In summary, the composite hydrogel has the potential application as an anti-bacterial wound dressing.
-
Key words:
- Sulfhydryl sodium alginate /
- S-nitroso sodium alginate /
- Nitric oxide /
- Hydrogel /
- Antibacterial
-
表 1 水凝胶中一氧化氮的总负载量
Table 1. Total loading of NO in hydrogel
复合水凝胶
Composite hydrogel巯基化海藻酸钠
SA-SH/gS-亚硝基海藻
酸钠 SA-SNO/gNO总负载
NO Total load/(µmol·g−1)β-GP-1 0.12 0 0 β-GP-2 0.11 0.01 152.19±0.13 β-GP-3 0.10 0.02 173.10±0.85 β-GP-4 0.08 0.04 205.43±1.21 β-GP-5 0.06 0.06 264.19±2.85 -
[1] GUO X, WANG Y, QIN Y, et al. Structures, properties and application of alginic acid: a review[J]. Int J Biol Macromol, 2020, 162: 618-628. doi: 10.1016/j.ijbiomac.2020.06.180 [2] FOROUZANDEHDEL S, FOROUZANDEHDEL S, RAMI M R. Synthesis of a novel magnetic starch-alginic acid-based biomaterial for drug delivery[J]. Carbohydr Res, 2020, 487: 107889. doi: 10.1016/j.carres.2019.107889 [3] SHI X, FANG Q, DING M, et al. Microspheres of carboxymethyl chitosan, sodium alginate and collagen for a novel hemostatic in vitro study[J]. J Biomater Appl, 2016, 30(7): 1092-1102. doi: 10.1177/0885328215618354 [4] AUGST A D, KONG H J, MOONEY D J. Alginate hydrogels as biomaterials[J]. Macromol Biosci, 2006, 6(8): 623-633. doi: 10.1002/mabi.200600069 [5] YANG Y, QI P K, YANG Z L, et al. Nitric oxide based strategies for applications of biomedical devices[J]. Biosurf Biotribol, 2015, 1(3): 177-201. doi: 10.1016/j.bsbt.2015.08.003 [6] SEABRA A B, JUSTO G Z, HADDAD P S. State of the art, challenges and perspectives in the design of nitric oxide-releasing polymeric nanomaterials for biomedical applications[J]. Biotechnol Adv, 2015, 33(6): 1370-1379. doi: 10.1016/j.biotechadv.2015.01.005 [7] KUMAR S, SINGH R K, BHARDWAJ T R. Therapeutic role of nitric oxide as emerging molecule[J]. Biomed Pharmacother, 2017, 85: 182-201. doi: 10.1016/j.biopha.2016.11.125 [8] WO Y, BRISBOIS E J, BARTLETT R H, et al. Recent advances in thromboresistant and antimicrobial polymers for biomedical applications: just say yes to nitric oxide (NO)[J]. Biomater Sci, 2016, 4(8): 1161-1183. doi: 10.1039/C6BM00271D [9] ORLANDO A, VIAZZI F, GIUSSANI M, et al. Endothelin-1/nitric oxide balance and HOMA index in children with excess weight and hypertension: a pathophysiological model of hypertension[J]. Hypertens Res, 2019, 42(8): 1192-1199. doi: 10.1038/s41440-019-0253-3 [10] RAMCHANDRA R, BARRETT C J, MALPAS S C. Chronic blockade of nitric oxide does not produce hypertension in baroreceptor denervated rabbits[J]. Hypertension, 2003, 42(5): 974-977. doi: 10.1161/01.HYP.0000094556.83257.8C [11] FERREIRA G C, PINHEIRO L C, OLIVEIRA-PAULA G H, et al. Antioxidant tempol modulates the increases in tissue nitric oxide metabolites concentrations after oral nitrite administration[J]. Chem-Biol Interact, 2021, 349: 109658. doi: 10.1016/j.cbi.2021.109658 [12] LIN Z H, HU J, SHI H, et al. Water extract of medicinal ink (WEMI) attenuates lipopolysaccharide-induced NO production of Raw264.7 cells via downregulating JAK2/STAT3-mediated iNOS expression[J]. J Ethnopharmacol, 2022, 282: 114636. doi: 10.1016/j.jep.2021.114636 [13] LEE M, REY K, BESLER K, et al. Immunobiology of nitric oxide and regulation of inducible nitric oxide synthase[J]. Macrophages, 2017: 181-207. [14] LUNDBERG J O, GLADWIN M T, WEITZBERG E. Strategies to increase nitric oxide signalling in cardiovascular disease[J]. Nat Rev Drug Discov, 2015, 14(9): 623-641. doi: 10.1038/nrd4623 [15] CARPENTER A W, SCHOENFISCH M H. Nitric oxide release: Part II. Therapeutic applications[J]. Chem Soc Rev, 2012, 41(10): 3742-3752. doi: 10.1039/c2cs15273h [16] CAI T B, WANG P G. Recent developments in anticancer nitric oxide donors[J]. Expert Opin Ther Patents, 2004, 14(6): 849-857. doi: 10.1517/13543776.14.6.849 [17] YU H, CUI L X, HUANG N, et al. Recent developments in nitric oxide-releasing biomaterials for biomedical applications[J]. Med Gas Res, 2019, 9(4): 184. [18] JANCZUK A J, JIA Q, XIAN M, et al. NO donors with anticancer activity[J]. Expert Opin Ther Patents, 2002, 12(6): 819-826. doi: 10.1517/13543776.12.6.819 [19] ZHANG Y, FENG S, MENG X, et al. Identifying urotropine derivatives as co-donors of formaldehyde and nitric oxide for improving antitumor therapy[J]. Chem Commun, 2021, 57(61): 7581-7584. doi: 10.1039/D1CC02177J [20] GHAFFARI A, MILLER C C, MCMULLIN B, et al. Potential application of gaseous nitric oxide as a topical antimicrobial agent[J]. Nitric Oxide-Biol Chem, 2006, 14(1): 21-29. doi: 10.1016/j.niox.2005.08.003 [21] HIBBARD H A J, REYNOLDS M M. Synthesis of novel nitroreductase enzyme-activated nitric oxide prodrugs to site-specifically kill bacteria[J]. Bioorganic Chem, 2019, 93: 103318. doi: 10.1016/j.bioorg.2019.103318 [22] El-SHERIEF H A, ABUO-RAHMA G E D A, SHOMAN M E, et al. Design and synthesis of new coumarin-chalcone/NO hybrids of potential biological activity[J]. Med Chem Res, 2017, 26(12): 3077-3090. doi: 10.1007/s00044-017-2004-9 [23] MONDAL A, SINGHA P, DOUGLASS M, et al. A synergistic new approach toward enhanced antibacterial efficacy via antimicrobial peptide immobilization on a nitric oxide-releasing surface[J]. ACS Appl Mater Interfaces, 2021, 13(37): 43892-43903. doi: 10.1021/acsami.1c08921 [24] REIGHARD K P, SCHOENFISCH M H. Antibacterial action of nitric oxide-releasing chitosan oligosaccharides against Pseudomonas aeruginosa under aerobic and anaerobic conditions[J]. Antimicrob Agents Chemother, 2015, 59(10): 6506-6513. doi: 10.1128/AAC.01208-15 [25] 杨莺莺, 李卓佳, 陈永青, 等. 用两种方式固定化的菌株对养殖水质净化效果的研究[C]//王衍亮. 2003水产科技论坛论文集. 北京: 海洋出版社, 2004: 240-247. [26] 陈书秀. 小球藻固定化培养的初步研究[J]. 养殖技术顾问, 2013(9): 215-216. [27] 张雪, 戴媛媛, 韩现芹, 等. 固定化藻类对海水养殖废水中氨氮·无机磷的净化效果[J]. 安徽农业科学, 2017, 45(7): 47-49. doi: 10.3969/j.issn.0517-6611.2017.07.019 [28] 陈红芬. 固定化藻菌强化水产养殖废水脱氮除磷研究[D]. 无锡: 江南大学, 2019: 10-45. [29] YE B, ZHANG S, LI R, et al. An in-situ formable and fibrils-reinforced polysaccharide composite hydrogel by self-crosslinking with dual healing ability[J]. Compos Sci Technol, 2018, 156: 238-46. doi: 10.1016/j.compscitech.2017.12.032 [30] DING J, HE R, ZHOU G, et al. Multilayered mucoadhesive hydrogel films based on thiolated hyaluronic acid and polyvinylalcohol for insulin delivery[J]. Acta Biomater, 2012, 8(10): 3643-3651. doi: 10.1016/j.actbio.2012.06.027 [31] 吉玉洁. 离子型一氧化氮供体及一氧化氮控释用于抗菌性研究[D]. 广州: 暨南大学, 2018: 16-17. [32] HART T W. Some observations concerning the S-nitroso and S-phenylsulphonyl derivatives of L-cysteine and glutathione[J]. Tetrahedron Lett, 1985, 26(16): 2013-2016. doi: 10.1016/S0040-4039(00)98368-0 [33] BRONIOWSKA K A, DIERS A R, HOGG N. S-nitrosoglutathione[J]. Biochim Biophys Acta, 2013, 1830(5): 3173-3181. doi: 10.1016/j.bbagen.2013.02.004 [34] FANG F C. Perspectives series: host/pathogen interactions. Mechanisms of nitric oxide-related antimicrobial activity[J]. J Clin Invest, 1997, 99(12): 2818-2825. doi: 10.1172/JCI119473 [35] HASAN N, LEE J, KWAK D, et al. Diethylenetriamine/NONOate-doped alginate hydrogel with sustained nitric oxide release and minimal toxicity to accelerate healing of MRSA-infected wounds[J]. Carbohydr Polym, 2021, 270: 118387 [36] MARAGOS C M, ANDREWS A W, KEEFER L K, et al. Mutagenicity of glyceryl trinitrate (nitroglycerin) in Salmonella typhimurium[J]. Mutat Res, 1993, 298(3): 187-195. doi: 10.1016/0165-1218(93)90040-K [37] CABRALES P. Nanoengineering bactericidal nitric oxide therapies[J]. Virulence, 2011, 2(3): 185-187. doi: 10.4161/viru.2.3.16746 [38] WINK D A, MITCHELL J B. Chemical biology of nitric oxide: insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. [J]. Free Radic Biol Med. 1998, 25(4/5): 434-456. -