Preparation and properties of medical compound hemostasis dressing from Pacific cod skin
-
摘要: 以太平洋鳕 (Gadus macrocephalus) 鱼皮明胶为原料,通过复配海藻酸钠得到一种可吸收复合止血敷料,并对其机械性能、止血效果、止血机理和生物相容性进行评价。结果表明,明胶质量浓度为10 mg·mL−1时制备的止血敷料具有较高的机械强度。体内止血评价结果显示,复合止血敷料对大鼠股动脉止血、肝创面止血和断尾止血模型均有良好的效果,止血时间分别为 (64±9)、(108±4) 和 (230±25) s,与市售明胶海绵的止血效果相当。复合止血敷料可缩短活化部分凝血活酶时间 (Activated partial thromboplastin time, APTT) 和凝血酶时间 (Thrombin time, TT),激活内源性凝血系统和共同性凝血途径,以及促进血栓烷素B2 (TXB2)、血小板第四因子 (PF4) 和P-选择素的释放,达到快速止血效果。生物相容性实验结果证实,该复合敷料无急性毒性、无刺激性且溶血率小于5%,达到医用材料的行业标准。该研究结果为开发新型医用敷料并实现鳕鱼皮高值化利用提供了参考和理论依据。Abstract: In this study, an absorbable composite hemostatic dressing was prepared by combining sodium alginate with Pacific cod (Gadus macrocephalus) skin gelatin, and its mechanical properties, hemostatic effect, hemostatic mechanism and biocompatibility were evaluated. The results show that the composite hemostatic dressing had high mechanical strength with 1% of gelatin concentration. Results of hemostatic evaluation in vivo indicate that the dressing had good hemostatic effect on the femoral artery, liver wound and tail hemostasis models of rats, and the hemostatic time was (64±9), (108±4) and (230±25) s, respectively, which was similar with the hemostatic effect of commercial gelatin sponge. The dressing could shorten activated partial thromboplastin time (APTT) and thrombin time (TT), which activated endogenous coagulation and common coagulation pathway, and promoted the release of thromboxane-B2 (TXB2), platelet factor-4 (PF4) and P-selectin to achieve rapid hemostatic effect. Biocompatibility experiments show that the composite dressing had no acute toxicity or irritation and the hemolysis rate was less than 5%, which meets the standards of medical materials. The study provides reference and theoretical basis for developing new medical dressing and realizing high-value utilization of Pacific cod skin.
-
表 1 不同明胶浓度对复合止血敷料理化性能的影响
Table 1. Physical and chemical properties of composite hemostatic sponge with different gelatin concentration
明胶质量浓度
Gelatin mass concentration/
(mg·mL−1)抗张强度
Tensile
strength/MPa断裂伸长率
Elongation at
break/%吸水倍数
Water absorption
ratio持水率
Water retention
ratio/%交联度
Degree of
crosslinking/%1 0.010 0±0.003 7a 7.54±0.37a 25.47±0.14a 21.00±0.20a 88.90±0.50a 5 0.037 2±0.004 2b 7.43±1.31a 31.82±0.80b 28.03±1.03b 63.13±0.63b 10 0.082 3±0.002 2c 6.81±0.21a 49.20±2.24c 30.49±2.18b 56.68±0.33c 15 0.085 9±0.003 6c 3.49±0.72b 38.15±2.24d 37.35±2.37c 43.36±2.86d 20 0.079 5±0.005 6c 1.36±0.30c 23.89±0.34a 37.99±0.30c 44.45±0.57d 注:同列字母不同者表示显著差异 (P<0.05)。 Note: Values with different letters within the same column have significant difference (P<0.05). 表 2 急性全身毒性试验、皮肤刺激试验和溶血试验结果
Table 2. Results of acute systemic toxicity assay, dermal irritation test and hemolysis ratio
实验组
Experimental group阴性对照组
Negative control group阳性对照组
Positive control group急性毒性试验 Acute systemic toxicity assay 第0小时体质量 Body mass at 0th hour/kg 0.167 7±0.008 2 0.174 0±0.004 6 0.185 3±0.005 0 第24小时体质量 Body mass at 24th hour/kg 0.172 8±0.007 4 0.177 9±0.009 7 0.186 2±0.004 2 第48小时体质量 Body mass at 48th hour/kg 0.184 3±0.008 3 0.182 9±0.004 9 0.178 5±0.007 4 第72小时体质量 Body mass at 72nd hour/kg 0.183 9±0.009 8 0.182 7±0.013 7 0.179 8±0.007 5 皮肤刺激试验 Dermal irritation test 第24小时红斑总数 Sum of erythema at 24th hour/个 4 0 第48小时红斑总数 Sum of erythema at 48th hour/个 0 0 第72小时红斑总数 Sum of erythema at 72nd hour/个 0 0 原发性刺激指数 Primary irritation index PII 0.22 0 溶血试验 Hemolysis test 溶血率 Hemolysis ratio/% 1.51±0.30 0.00 100.00 -
[1] BURNETT L R, RICHTER J G, RAHMANY M B, et al. Novel keratin (KeraStat™) and polyurethane (Nanosan®-Sorb) biomaterials are hemostatic in a porcine lethal extremity hemorrhage model[J]. J Biomater Appl, 2014, 28(6): 869-879. doi: 10.1177/0885328213484975 [2] LAN G, LU B, WANG T, et al. Chitosan/gelatin composite sponge is an absorbable surgical hemostatic agent[J]. Colloids Surf B, 2015, 136: 1026-1034. doi: 10.1016/j.colsurfb.2015.10.039 [3] FELGUEIRAS H P, AMORIM M T P. Functionalization of electrospun polymeric wound sponges with antimicrobial peptides[J]. Colloids Surf B, 2017, 156: 133-148. doi: 10.1016/j.colsurfb.2017.05.001 [4] 陈胜军, 李来好, 杨贤庆, 等. 罗非鱼综合加工利用与质量安全控制技术研究进展[J]. 南方水产科学, 2011, 7(4): 85-90. doi: 10.3969/j.issn.2095-0780.2011.04.013 [5] 蓝广芊. 壳聚糖/明胶复合止血材料的研制及其性能研究[D]. 重庆: 西南大学, 2016, 5-8. [6] SADOWSKA M, KOLADZIEJSKA I, NIECIKOWSKA C. Isolation of collagen from the skins of Baltic cod (Gadus morhua)[J]. Food Chem, 2003, 81(2): 257-262. doi: 10.1016/S0308-8146(02)00420-X [7] LI D, YE Y, LI D, et al. Biological properties of dialdehyde carboxymethyl cellulose crosslinked gelatin-peg composite hydrogel fibers for wound dressings[J]. Carbohydr Polym, 2015, 137: 508-514. [8] BARHAM A S, TEWES F, HEALY A M. Moisture diffusion and permeability characteristics of hydroxypropyl methylcellulose and hard gelatin capsules[J]. Int J Pharm, 2015, 478(2): 796-803. doi: 10.1016/j.ijpharm.2014.12.029 [9] CHEN H, XING X, TAN H, et al. Covalently antibacterial alginate-chitosan hydrogel dressing integrated gelatin microspheres containing tetracycline hydrochloride for wound healing[J]. Mater Sci Eng C, 2017, 70: 287-295. doi: 10.1016/j.msec.2016.08.086 [10] WANG K, NUNE K C, MISRA R D K. The functional response of alginate-gelatin-nanocrystalline cellulose injectable hydrogels toward delivery of cells and bioactive molecules[J]. Acta Biomater, 2016, 36: 143-151. doi: 10.1016/j.actbio.2016.03.016 [11] LIU S, LI Y, LI L. Enhanced stability and mechanical strength of sodium alginate composite films[J]. Carbohydr Polym, 2017, 160: 62-70. doi: 10.1016/j.carbpol.2016.12.048 [12] 谭国忠, 涂欣冉, 郭黎洋, 等. 3D打印明胶/海藻酸钠/58S生物玻璃骨缺损修复支架的生物安全性评价[J]. 中国组织工程研究, 2022, 26(4): 545-551. [13] 孙士儒, 刘阳, 王景辉, 等. 具有不同拓扑结构的海藻酸钠-明胶复合水凝胶的3D打印制备及其性能[J]. 复合材料学报, 2021, 39. DOI: 10.13801/j.cnki.fhclxb.20210917.001. [14] HOU H, LI B, ZHAO X, et al. The effect of Pacific cod (Gadus macrocephalus) skin gelatin polypeptides on UV radiation-induced skin photoaging in ICR mice[J]. Food Chem, 2009, 115(3): 945-950. doi: 10.1016/j.foodchem.2009.01.015 [15] LAEMMLI U K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4[J]. Nature, 1970, 227(5259): 680. doi: 10.1038/227680a0 [16] YAN J, MIAO Y, TAN H, et al. Injectable alginate/hydroxyapatite gel scaffold combined with gelatin microspheres for drug delivery and bone tissue engineering[J]. Mater Sci Eng C, 2016, 63: 274-284. doi: 10.1016/j.msec.2016.02.071 [17] HAN F, DONG Y, SU Z, et al. Preparation, characteristics and assessment of a novel gelatin-chitosan sponge scaffold as skin tissue engineering material[J]. Int J Pharm, 2014, 476(1/2): 124-133. [18] SAFANDOWSKA M, PIETRUCHA K. Effect of fish collagen modification on its thermal and rheological properties[J]. Int J Biol Macromol, 2013, 53: 32-37. doi: 10.1016/j.ijbiomac.2012.10.026 [19] DHAND C, VENKATESH M, BARATHI V A, et al. Bio-inspired crosslinking and matrix-drug interactions for advanced wound dressings with long-term antimicrobial activity[J]. Biomaterials, 2017: 153-168. [20] DUAN R, ZHANG J, LIU, L, et al. The functional properties and application of gelatin derived from the skin of channel catfish (Ictalurus punctatus)[J]. Food Chem, 2018, 239(15): 464-469. [21] SEE S F, GHASSEM M, MAMOT S, et al. Effect of different pretreatments on functional properties of African catfish (Clarias gariepinus) skin gelatin[J]. J Food Sci Tech, 2015, 52(2): 753-762. doi: 10.1007/s13197-013-1043-6 [22] 王运智. 两种鱼皮胶原止血海绵理化性能研究与生物学评价[D]. 烟台: 烟台大学, 2019: 16-17. [23] KOOSEHGOL S, EBRAHIMIAN-HOSSEINABADI M, ALIZADEH M, et al. Preparation and characterization of in situ chitosan/polyethylene glycol fumarate/thymol hydrogel as an effective wound dressing[J]. Mater Sci Eng C, 2017, 79: 66-75. doi: 10.1016/j.msec.2017.05.001 [24] WANG C, LUO W, LI P, et al. Preparation and evaluation of chitosan/alginate porous microspheres/Bletilla striata, polysaccharide composite hemostatic sponges[J]. Carbohydr Polym, 2017, 174: 432-442. [25] MIRZAKHANIAN Z, FAGHIHI K, BARATI A, et al. Synthesis and characterization of fast-swelling porous superabsorbent hydrogel based on starch as a hemostatic agent[J]. J Biomater Sci Polym Ed, 2015, 26(18): 1-13. [26] LI L, DU Y, YIN Z, et al. Preparation and the hemostatic property study of porous gelatin microspheres both in vitro and in vivo[J]. Colloids Surf B, 2019, 187: 110641. [27] ZHANG K, LI J, WANG Y, et al. Hydroxybutyl chitosan/diatom-biosilica composite sponge for hemorrhage control[J]. Carbohydr Polym, 2020, 236: 116051. doi: 10.1016/j.carbpol.2020.116051 [28] LI H, CHENG W, LIU K, et al. Reinforced collagen with oxidized microcrystalline cellulose shows improved hemostatic effects[J]. Carbohydr Polym, 2017, 165: 30-38. doi: 10.1016/j.carbpol.2017.02.023 [29] LIU Y, LIU Y, LIAO N, et al. Fabrication and durable antibacterial properties of electrospun chitosan nanofibers with silver nanoparticles[J]. Int J Biol Macromol, 2015, 79: 638-643. doi: 10.1016/j.ijbiomac.2015.05.058 [30] SARIKA P R, JAMES N R. Polyelectrolyte complex nanoparticles from cationised gelatin and sodium alginate for curcumin delivery[J]. Carbohydr Polym, 2016, 148: 354-361. doi: 10.1016/j.carbpol.2016.04.073 -