Effects of inoculation of Lactiplantibacillus pentosus and Saccharomyces cerevisiae on quality of low-salt fermented bream
-
摘要: 为提高低盐发酵鱼的风味和安全品质,以鳊鱼 (Parabramis pekinensis) 为原料,接种戊糖乳杆菌 Lactiplantibacillus pentosus (Lp-1) 和酿酒酵母菌Saccharomyces cerevisiae (Sc-2018) 进行发酵,以pH、挥发性盐基氮 (TVB-N)、微生物、TCA-可溶性肽、生物胺、挥发性风味物质等为主要指标评价接种微生物菌株对低盐发酵鳊鱼品质的影响。结果表明,与未接种的对照组相比,发酵过程中,接种戊糖乳杆菌Lp-1和酿酒酵母菌Sc-2018可有效抑制挥发性盐基氮的产生和生物胺的累积,促进蛋白质降解和乙酸乙酯、3-羟基-2-丁酮等挥发性风味物质的生成。其中,接种戊糖乳杆菌Lp-1能够促进乳酸菌生长,适度降低发酵鳊鱼pH,且更大程度降低发酵鳊鱼的生物胺含量 (P<0.05),提高食用安全性,同时提升了风味。Abstract: In order to improve the flavor and safety quality of low-salt fermented fish, we inoculated bream (Parapraxis pekinensis) with Lactiplantibacillus pentosus (Lp-1) and Saccharomyces cerevisiae (Sc-2018), so as to study the effects of inoculating microbial strains on the quality of low-salt fermented bream based on the indexes of pH, volatile basic nitrogen (TVB-N), microorganisms, TCA-soluble peptides, biogenic amines and volatile flavor compounds. Results show that compared with the control group, inoculation of Lp-1 and Sc−2018 could inhibit the production of volatile basic nitrogen and biogenic amines effectively, promote the degradation of protein and the formation of volatile flavor compounds such as ethyl acetate and 3-hydroxy-2-butanone. Inoculation of Lp-1 could promote the growth of lactic acid bacteria and reduce the pH of fermented bream appropriately. Compared with the other two groups, inoculation with lactic acid bacteria could reduce the biogenic amine content of fermented bream siginificantly (P<0.05), which improves the edible safety and the flavor of bream.
-
Key words:
- Parapraxis pekinensis /
- Lactiplantibacillus pentosus /
- Saccharomyces cerevisiae /
- Fermentation /
- Quality
-
表 1 鳊鱼发酵过程挥发性风味化合物变化
Table 1. Change of volatile flavor compounds during fermentation of bream
μg·kg−1 化合物 Compound 对照组 Control 发酵组 Fermentation group 戊糖乳杆菌 Lp-1 酿酒酵母菌 Sc-2018 酯类 Esters 乙酸乙酯 Ethyl Acetate 31.43±1.22c 118.05±10.31a 85.28±9.10b 乳酸乙酯 Propanoic acid, 2-hydroxy-, ethyl ester 12.18±0.59a — 13.20±1.08a 乙酸异戊酯 1-Butanol, 3-methyl-, acetate — — 5.27±1.77a 异戊酸乙酯 Butanoic acid, 3-methyl-, ethyl ester — — 10.34±0.96a 棕榈酸乙酯 Hexadecanoic acid, ethyl ester — — 6.62±0.50a 戊二酸二甲酯 Pentanedioic acid, dimethyl ester — — 36.97±10.74a 异丁酸乙酯 Propanoic acid, 2-methyl-, ethyl ester — — 7.77±0.97a 己二酸二甲酯 Hexanedioic acid, dimethyl ester — 42.71±5.97a 总酯类 Total esters 46.61±1.78b 160.76±13.91a 157.09±8.07a 醇类 Alcohols S-(−)-2-甲基-1-丁醇 (S)-2-methylbutan-1-ol — 19.12±0.67a — 2-庚醇 2-Heptanol — 26.30±1.12a — 顺-2-戊烯-1-醇 Cis-2-penten-1-ol — 11.09±0.56a 6.53±1.13a 3-苯丙醇 3-Phenylpropanol — 31.06±2.55a 庚醇 1-Heptanol — — 24.44±3.93a 1-戊醇 1-Pentanol — — 62.91±11.43a 异丁醇 Isobutanol — — 31.02±5.26a 2,3-丁二醇 2, 3-Butanediol — — 94.52±10.61a 反式-2-辛烯-1-醇 (E)-oct-2-en-1-ol — — 13.93±1.13a 2,6-二甲基-4-庚醇 Diisobutylcarbinol — — 10.84±0.03a L-薄荷醇 Levomenthol — — 11.35±2.04a 苯乙醇 Phenylethyl Alcohol — — 378.51±28.74a 乙醇 Ethanol 785.32±33.12c 1 382.67±70.23b 2 491.16±270.71a 2-甲基-2-丙醇 Tert-butanol 19.64±1.25b 43.34±12.46a 15.08±0.20b 正丙醇 1-Propanol 15.78±0.85a 15.83±3.00a 1-戊烯-3-醇 1-Penten-3-ol 13.52±3.93b 22.99±2.34a 19.32±3.32ab 异戊醇 1-Butanol, 3-methyl- 457.93±48.02b 89.38±6.51c 912.04±123.18a 正己醇 1-Hexanol 155.74±31.57b 131.09±15.81b 371.34±68.96a 1-辛烯-3-醇 1-Octen-3-ol 148.15±15.00b 346.25±20.83a 371.34±68.96a 2-乙基己醇 Eucalyptol 36.68±0.67b 65.92±7.96a 45.13±2.37b 桉叶油醇 Eucalyptol 99.48±3.83c 156.54±7.98b 203.93±7.36a (2Z)-2-辛烯-1-醇 (2Z)-Octen-1-ol 10.33±1.59a — — 芳樟醇 Linalool 117.92±3.79c 808.76±14.39a 222.55±17.08b 2-茨醇 endo-Borneol 10.29±1.34b 196.83±15.52a 14.92±0.20b 4-萜烯醇 Terpinen-4-ol 42.59±1.67c 279.10±8.39a 86.58±3.07b 2-(4-甲基苯基)丙-2-醇 2-(4-Methylphenyl)propan-2-ol 17.69±1.38c 41.72±3.69a 27.16±1.09b alpha-松油醇 à-Terpineol 42.84±0.93c 52.67±4.89b 76.45±0.17a 2-甲基丁醇 2-methylbutan-1-ol 39.16±3.06b — 140.33±25.73a 1-壬醇 1-Nonanol 15.30±0.17a — 26.01±4.11a 总醇类 Total alcohols 2 003.34±63.43c 3 574.95±347.88b 5 005.67±138.76a 醛类 Aldehydes 戊醛 Pentanal — 15.35±2.40a — 庚醛 Heptanal — — 13.58±3.62a 乙醛 Acetaldehyde 5.85±0.71b — 30.21±9.84a 异戊醛 3-methyl-butanal 43.13±5.03b 16.37±2.11b 86.51±29.29a 2-甲基丁醛 2-methyl-butanal 22.75±2.04a 33.41±10.39a 正己醛 Hexanal 322.67±64.43a 97.99±25.76c 210.73±56.37b 正辛醛 Octanal 20.18±0.88b 44.53±6.56a 25.13±3.24b 苯乙醛 Benzeneacetaldehyde 13.61±0.77b 32.92±11.06a 壬醛 Nonanal 389.89±116.78a 315.78±11.98a 379.46±46.96a 癸醛 Decanal 34.04±1.84b 65.10±7.47a 36.81±6.40b 十二醛 Dodecanal 6.57±0.60b 14.25±3.40a 7.52±1.66b 肉豆蔻醛 Tetradecanal 2.42±0.71a — — 总醛类 Total aldehydes 1112.77±7.35b 1106.94±148.19a 844.03±162.07ab 酮类 Ketones 2,3-戊二酮 2, 3-Pentanedione — 26.68±10.06a — 2,5-辛二酮 2, 5-Octanedione — 128.06±12.80a — 2-丁酮 2-Butanone — — 791.55±107.76a 丙酮 Acetone 125.27±3.94a 205.18±47.81a 172.21±44.47a 3-羟基-2-丁酮 Acetoin 349.13±12.04b 832.38±22.65a 282.00±82.80b 2-庚酮 2-Heptanone 6.30±1.34b 24.52±2.21a 9.31±1.80b 2,3-辛二酮 2, 3-Octanedione 27.24±6.68b — 56.76±17.94a 甲基庚烯酮 Sulcatone 17.04±1.08b 65.02±9.93a 20.62±1.64b 总酮类 Total ketones 524.99±14.64b 1 239.16±95.75a 1 302.04±357.24a 酸类 Acids 乙酸 Acetic acid 184.48±34.21b 664.65±31.31a — 异丁酸 Isobutyric acid 11.16±1.18b 15.34±1.96b 36.75±6.69a 异戊酸 Isovaleric acid 78.42±7.99b 100.10±3.91b 317.56±40.72a 2-甲基丁酸 2-methylbutyric acid 33.78±3.80c 96.33±13.23b 184.72±45.33a 总酸类 Total acids 307.85±42.49c 876.41±50.35a 586.66±41.81b 烯烃类 Olefins 3,7-二甲基-1-辛烯 3,7-dimethyloct-1-ene — — 38.92±6.71a 苯乙烯 Styrene 41.53±6.18b 265.74±26.79a 58.86±8.46b 水芹烯 à-Phellandrene 9.09±0.48b 52.09±2.99a — α-侧柏烯 Bicyclo[3.1.0]hex-2-ene, 2-methyl-5-(1-
methylethyl)-7.17±3.08a — — (−)-柠檬烯 Cyclohexene, 1-methyl-4-(1-
methylethenyl)-, (S)-46.57±1.00a — 62.06±4.53a ç-松油烯 ç-Terpinene 17.56±2.08c 160.04±15.39a 51.57±4.48b Alpha-姜黄烯 Benzene, 1-(1,5-dimethyl-4-hexenyl)-4-
methyl-6.94±0.95b 73.78±12.18a 3.18±2.87b 2-蒎烯 à-Pinene 3.50±3.04b 69.28±26.14a — 总烯烃类 Total olefins 126.94±8.41c 620.93±26.51a 214.18±13.88b 烷烃类 Alkanes 十二烷 Dodecane — 348.18±52.18a 234.64±25.19b 2,6-二甲基-十一烷 Undecane, 2, 6-dimethyl- — 22.99±2.53a — 4-甲基-十一烷 Undecane, 4-methyl- — 96.10±11.97a — 2,3,5,8-四甲基癸烷 Decane, 2, 3, 5, 8-tetramethyl- — — 11.57±8.77a 2,6,10-三甲基-十二烷 Dodecane, 2, 6, 10-trimethyl- — — 203.12±14.30a 2,5-二甲基-十一烷 Undecane, 2, 5-dimethyl- — — 16.81±4.48a 正己烷 n-Hexane 99.49±12.06a 100.01±10.26a — 甲基环戊烷 Cyclopentane, methyl- 9.83±3.42b 13.83±0.98a — 正癸烷 Decane 17.35±0.88b 45.15±6.45a 18.96±1.67b 十一烷 Undecane 26.20±1.32c 51.08±8.85b 88.42±4.02a 2,6-二甲基-壬烷 Nonane, 2, 6-dimethyl- 35.67±2.62a 28.66±32.04a — 2,3,6,7-四甲基-辛烷 Octane, 2, 3, 6, 7-tetramethyl- 57.78±5.13a 24.22±1.98b 45.50±15.56a 6-乙基-2-甲基辛烷 Octane, 6-ethyl-2-methyl- 13.52±0.43a — — 2,6,11-三甲基-十二烷 Dodecane, 2, 6, 11-trimethyl- 85.25±3.75b 169.60±18.48a — 正十四烷 Tetradecane 35.55±2.18b 78.37±10.88a 41.62±1.63b 十九烷 Nonadecane 17.64±1.42c 48.98±0.97a 26.11±1.72b 十七烷 Heptadecane 9.24±0.41a 27.07±7.61a 23.94±7.79a 总烷烃类 Total alkanes 388.05±41.07b 842.85±119.02a 625.54±173.57ab 其他 Others 乙苯 Ethylbenzene 58.04±3.09b 110.80±11.73a 53.85±8.10b 对二甲苯 p-Xylene 279.52±13.12a 242.05±35.21a 253.58±25.91a 乙二醇丁醚 Ethanol, 2-butoxy- 6.67±0.56b 33.60±32.23a — 乙二醇苯醚 Ethanol, 2-phenoxy- 40.61±0.42b 42.40±4.88b 263.98±47.41a 花椒素 Xanthoxylin 15.38±0.70b 19.89±2.20a 10.88±0.22c 2,2',5,5'-四甲基联苯基 1,1'-Biphenyl, 2, 2', 5, 5'-tetramethyl- 4.40±1.07a — 6.08±0.54a N-甲基吡咯 1H-Pyrrole, 1-methyl- — 12.97±2.50a — 4-烯丙基苯甲醚 Estragole — 16.86±2.64a — 邻异丙基甲苯 o-Cymene — 94.70±9.49a 27.01±1.44b 总其他化合物 Total others 404.61±15.56b 464.43±34.10b 572.81±58.83a 注:—. 未检测出;同一行不同小写字母表示各样品具有显著差异 (P<0.05)。 Note: —. Undetected. Different lowercase letters within the same line indicate significant difference among the samples (P<0.05). -
[1] 魏友海. 鳊鱼的营养价值与食用[J]. 科学养鱼, 2009(11): 78. [2] 熊哲民, 丽蕊, 杨江, 等. 宣恩火腿的加工工艺和品质特性研究进展[J]. 肉类研究, 2021, 35(8): 64-70. doi: 10.7506/rlyj1001-8123-20210309-060 [3] 刘英丽, 万真, 杨梓妍, 等. 乳酸菌对萨拉米香肠风味形成的研究进展[J]. 食品科学, 2020, 41(23): 273-282. doi: 10.7506/spkx1002-6630-20200416-204 [4] ZANG J, XU Y, XIA W, et al. Quality, functionality, and microbiology of fermented fish: a review[J]. Crit Rev Food Sci Nutr, 2020, 60(7): 1228-1242. doi: 10.1080/10408398.2019.1565491 [5] KŘÍŽEK M, VÁCHA F, VORLOVÁ L, et al. Biogenic amines in vacuum-packed and non-vacuum-packed flesh of carp (Cyprinus carpio) stored at different temperatures[J]. Food Chem, 2004, 88(2): 185-191. doi: 10.1016/j.foodchem.2003.12.040 [6] 沈颖莹, 吴燕燕, 李来好, 等. 发酵鳜鱼营养成分和安全性评价[J]. 南方水产科学, 2020, 16(3): 103-112. doi: 10.12131/2090247 [7] ORMANCI H B, ARIK COLAKOGLU F. Changes in biogenic amines levels of Lakerda (salted Atlantic Bonito) during ripening at different temperatures[J]. J Food Process Preserv, 2017, 41(1): e12736. doi: 10.1111/jfpp.12736 [8] 蓝翔, 朱翠翠, 何晓霞, 等. 接种生物胺降解菌对鱼露生物胺含量及品质的影响[J]. 中国海洋大学学报(自然科学版), 2021, 51(4): 55-64. [9] TIAN X, GAO P, XU Y, et al. Reduction of biogenic amines accumulation with improved flavor of low-salt fermented bream (Parabramis pekinensis) by two-stage fermentation with different temperature[J]. Food Biosci, 2021, 44: 101438. doi: 10.1016/j.fbio.2021.101438 [10] BAO R Q, LIU S S, JI C F, et al. Shortening fermentation period and quality improvement of fermented fish, Chouguiyu, by co-inoculation of Lactococcus lactis M10 and Weissella cibaria M3[J]. Front Microbiol, 2018, 9: 3003. doi: 10.3389/fmicb.2018.03003 [11] ZENG X, XIA W, JIANG Q, et al. Effect of autochthonous starter cultures on microbiological and physico-chemical characteristics of Suan yu, a traditional Chinese low salt fermented fish[J]. Food Control, 2013, 33(2): 344-351. doi: 10.1016/j.foodcont.2013.03.001 [12] ZAMAN M Z, ABU BAKAR F, JINAP S, et al. Novel starter cultures to inhibit biogenic amines accumulation during fish sauce fermentation[J]. Int J Food Microbiol, 2011, 145(1): 84-91. doi: 10.1016/j.ijfoodmicro.2010.11.031 [13] LIAO E, XU Y, JIANG Q, et al. Effects of inoculating autochthonous starter cultures on biogenic amines accumulation of Chinese traditional fermented fish[J]. J Food Process Preserv, 2018, 42(8): e13694. doi: 10.1111/jfpp.13694 [14] WANG W X, XIA W S, GAO P, et al. Proteolysis during fermentation of Suanyu as a traditional fermented fish product of China[J]. Int J Food Prop, 2017, 20(Sup1): S166-S176. doi: 10.1080/10942912.2017.1293089 [15] SUN Y, GAO P, XU Y, et al. Effect of storage conditions on microbiological characteristics, biogenic amines, and hysicochemical quality of low-salt fermented fish[J]. J Food Prot, 2020, 83(6): 1057-1065. doi: 10.4315/JFP-19-607 [16] XU Y, HE L, XIA W, et al. The impact of fermentation at elevated temperature on quality attributes and biogenic amines formation of low-salt fermented fish[J]. Int J Food Sci Technol, 2018, 54(3): 723-733. [17] GAO P, WANG W, JIANG Q, et al. Effect of autochthonous starter cultures on the volatile flavour compounds of Chinese traditional fermented fish (Suan yu)[J]. Int J Food Sci Technol, 2016, 51(7): 1630-1637. doi: 10.1111/ijfs.13134 [18] 华倩. 接种微生物发酵剂对鱼酱酸品质提升研究[D]. 无锡: 江南大学, 2020: 36. [19] TABANELLI G, COLORETTI F, CHIAVARI C, et al. Effects of starter cultures and fermentation climate on the properties of two types of typical Italian dry fermented sausages produced under industrial conditions[J]. Food Control, 2012, 26(2): 416-426. doi: 10.1016/j.foodcont.2012.01.049 [20] YANG Z, LIU S, LV J, et al. Microbial succession and the changes of flavor and aroma in Chouguiyu, a traditional Chinese fermented fish[J]. Food Biosci, 2020, 37: 100725. doi: 10.1016/j.fbio.2020.100725 [21] JI C, ZHANG J, LIN X, et al. Metaproteomic analysis of microbiota in the fermented fish, Siniperca chuatsi[J]. LWT, 2017, 80: 479-484. doi: 10.1016/j.lwt.2017.03.022 [22] 彭巧梅, 邹洋, 刘兴海, 等. 鱼肉新鲜度检测方法研究[J]. 数字印刷, 2020(2): 32-42. [23] AL-NAJADA A R. Assessment of total volatile basic nitrogen (TVB-N) and microbial contents of iced marine fish species[J]. Int J Trend Sci Res Dev, 2019, 4(1): 712-718. [24] ZENG X, XIA W, JIANG Q, et al. Chemical and microbial properties of Chinese traditional low-salt fermented whole fish product Suan yu[J]. Food Control, 2013, 30(2): 590-595. doi: 10.1016/j.foodcont.2012.07.037 [25] 耿瑞蝶, 王金水. 呈味氨基酸和肽对发酵食品中风味的作用[J]. 中国调味品, 2019, 44(7): 176-178. doi: 10.3969/j.issn.1000-9973.2019.07.040 [26] 何丽娜. 发酵工艺对鲤鱼质构及食用品质的影响[D]. 无锡: 江南大学, 2019: 34. [27] 朱容新, 何璇, 马堃, 等. 戊糖乳杆菌的添加对腌制鲅鱼加工贮藏过程中生物胺的抑制效果研究[J]. 现代食品, 2021(18): 203-210. [28] SHEN Y, WU Y, WANG Y, et al. Contribution of autochthonous microbiota succession to flavor formation during Chinese fermented mandarin fish (Siniperca chuatsi)[J]. Food Chem, 2021, 348: 129107. doi: 10.1016/j.foodchem.2021.129107 [29] 王蔚新. 酸鱼发酵过程中蛋白质降解及其风味形成机制研究[D]. 无锡: 江南大学, 2017: 63-64. [30] HOU W, HAN Q, GONG H, et al. Analysis of volatile compounds in fresh sturgeon with different preservation methods using electronic nose and gas chromatography/mass spectrometry[J]. RSC Adv, 2019, 9(67): 399-3999. [31] 李莹, 白凤翎, 励建荣. 发酵海产品中微生物形成挥发性代谢产物研究进展[J]. 食品科学, 2015, 36(15): 255-259. doi: 10.7506/spkx1002-6630-201515047 [32] 陈元元, 吴岩, 刘晓光. 乙偶姻生物合成代谢调控及其应用[J]. 生物学杂志, 2014, 31(5): 76-80. doi: 10.3969/j.issn.2095-1736.2014.05.076 [33] GIRI A, OSAKO K, OHSHIMA T. Identification and characterisation of headspace volatiles of fish miso, a Japanese fish meat based fermented paste, with special emphasis on effect of fish species and meat washing[J]. Food Chem, 2010, 120(2): 621-631. doi: 10.1016/j.foodchem.2009.10.036 -