Mixotrophic and carbon fixation culture of nervonic acid-producing microalgae Mychonastes afer
-
摘要: 微藻是水体中重要的生产者和环境调节因素,作为饵料和调水剂在水产养殖中起着重要作用。微藻的培养方式多样,探究了微藻Mychonastes afer和小球藻Chlorella sorokiniana在不同营养方式及通气情况的生长与光合能力。在自养、兼养和异养,以及不同浓度二氧化碳 (CO2) 通气的条件下,分别测定了两株藻的生长曲线、光合电子传递效率、有机碳源利用率、光合放氧和呼吸耗氧速率,并着重对M. afer的油脂组分进行分析。结果表明小球藻C. sorokiniana可以摆脱对光能的依赖,完全依靠有机碳源营异养生长,而在此条件下M. afer几乎不能生长。有机碳源的加入,对两株藻的光合系统活性均产生了一定程度的抑制作用,使光合电子传递效率以及光合放氧水平下降;同时发现在兼养条件下,高浓度CO2最有利于M. afer生长,促进了细胞对葡萄糖的利用效率,且油脂和神经酸产量提高。研究表明两株藻在协同利用外源有机碳源和自身光合系统方面存在显著差异,并探究出一种用于生产天然神经酸的M. afer最佳兼养条件。
-
关键词:
- 微藻Mychonastes afer /
- 兼养培养 /
- 二氧化碳 /
- 呼吸作用 /
- 光合作用
Abstract: Microalgae are a group of single cell microorganism, which play an important role in aquatic production such as aquatic feeding and water regulating. This research focuses on the growth and photosynthetic capacity of Mychonastes afer and Chlorella sorokiniana under different nutrition and aeration conditions. The microalgae were cultivated under autotrophic, mixotrophic or heterotrophic conditions, respectively. And the influence of CO2 concentration was also investigated. The growth curve, photosynthetic electron transfer rate, organic carbon source utilization, photosynthetic oxygen evolution and respiratory oxygen consumption rate were measured to inflect the differences between M. afer and C. sorokiniana, and the emphasis was given to lipid components of M. afer. The results show that C. sorokiniana could grow under heterotrophic condition without light, while M. afer could not. The photosynthetic system of the two species were both inhibited by organic carbon sources, displaying lower efficiency of photosynthetic electron transfer rates and slower photosynthetic oxygen evolution rates. Besides, it is found that under mixotrophy condition, high concentration of CO2 was beneficial to the growth of M. afer, which promoted cell utilization of glucose, and increased the production of lipid and nervonic acid. The study explores a mixotrophic condition for M. afer to produce natural nervonic acid, shows significant differences between the two algae species in photosynthetic system, and explores the cooperative utilization of external organic carbon sources.-
Key words:
- Mychonastes afer /
- Mixotrophy /
- CO2 /
- Respiration /
- Photosynthesis
-
表 1 培养基中葡萄糖剩余量 (
$\overline {\boldsymbol X}{\bf \pm } {\bf {SD}}$ )Table 1. Residual glucose in culture medium
g·L−1 时间
t/dC. sorokiniana M. afer 兼养-空气
Mixotrophy-air兼养-二氧化碳
Mixotrophy-CO2兼养-空气
Mixotrophy-air兼养-二氧化碳
Mixotrophy-CO23 1.50±0.001 2.86±0.010 0.45±0.030 ND 6 0.03±0.001 3.60±0.001 1.50±0.320 ND 8 6.00±0.530 10.99±0.270 4.02±0.620 1.19±0.050 注:ND为未检测出葡萄糖,即培养过程中每次添加的2 g·L−1葡萄糖在检测时已全部利用。 Note: ND indicates that no glucose was detected, which means that 2 g·L−1 glucose had been fully utilized. 表 2 不同条件下M. afer细胞生物量、脂肪酸和神经酸质量分数 (
$\overline {\boldsymbol X}{\bf {\pm} } {\bf{SD}}$ )Table 2. Biomass, mass fraction of fatty acids and nervonic acids of M. afer cells under different conditions
生物量
Biomass/(g·L−1)脂肪酸质量分数
Mass fraction of fatty acid/(mg·g−1)神经酸质量分数
Mass fraction of nervonic acid/(mg·g−1)自养-二氧化碳 Autotrophy-CO2 2.458 3±0.000 4 132.20±9.68 0.93±0.02 兼养-空气 Mixotrophy-air 2.620 0±0.000 3 154.01±16.63 2.59±0.01 兼养-二氧化碳 Mixotrophy-CO2 3.261 7±0.000 1 253.02±6.33 5.93±0.15 -
[1] 魏东. 微藻在水产养殖业中的应用及发展趋势[J]. 当代水产, 2014, 39(2): 57-58. doi: 10.3969/j.issn.1674-9049.2014.02.016 [2] 张国维, 李勤慎, 邵东宏, 等. 微藻在水产养殖中的研究应用进展[J]. 中国水产, 2020(2): 72-74. [3] 王盛林, 刘平怀, 曹猛. 微藻营养价值及微藻饵料的开发利用[J]. 食品工业, 2019, 40(7): 275-279. [4] 芦崇德, 刘婧婧, 冯一平, 等. 固定化小球藻产氧及光合速率的研究[J]. 生物技术通报, 2021, 37(3): 92-98. [5] DING Y, GUO Z, MEI J, et al. Investigation into the novel microalgae membrane bioreactor with internal circulating fluidized bed for marine aquaculture wastewater treatment[J]. Membranes (Basel), 2020, 10(11): 353. doi: 10.3390/membranes10110353 [6] 刘鹏. 兼养培养对三种典型微藻生长与胞内组分及脂质合成相关基因表达的影响研究 [D]. 长沙: 中南大学, 2010: 10-15. [7] 牛海亚, 马玉龙, 石勋祥, 等. 不同营养方式对小球藻FACHB 484生长的影响及其非自养生长机理研究[J]. 水生生物学报, 2014, 38(3): 474-479. doi: 10.7541/2014.67 [8] LI T, ZHENG Y, YU L, et al. Mixotrophic cultivation of a Chlorella sorokiniana strain for enhanced biomass and lipid production[J]. Biomass and Bioenergy, 2014, 66: 204-213. doi: 10.1016/j.biombioe.2014.04.010 [9] 周华伟, 林炜铁, 陈涛. 小球藻的异养培养及应用前景[J]. 氨基酸和生物资源, 2005(4): 69-73. [10] LIU T, LIU F, WANG C, et al. The boosted lipid accumulation in microalga Chlorella vulgaris by a heterotrophy and nutrition-limitation transition cultivation regime[J]. World J Microbiol Biotechnol, 2016, 32(12): 202. doi: 10.1007/s11274-016-2164-7 [11] ROSENBERG J N, KOBAYASHI N, BARNES A, et al. Comparative analyses of three Chlorella species in response to light and sugar reveal distinctive lipid accumulation patterns in the microalga C. sorokiniana[J]. PLoS One, 2014, 9(4): e92460. doi: 10.1371/journal.pone.0092460 [12] JIN H, ZHANG H, ZHOU Z, et al. Ultrahigh-cell-density heterotrophic cultivation of the unicellular green microalga Scenedesmus acuminatus and application of the cells to photoautotrophic culture enhance biomass and lipid production[J]. Biotechnol Bioeng, 2020, 117(1): 96-108. doi: 10.1002/bit.27190 [13] YUAN C, LIU J H, FAN Y, et al. Mychonastes afer HSO-3-1 as a potential new source of biodiesel[J]. Biotechnol Biofuels, 2011, 4(1): 47. doi: 10.1186/1754-6834-4-47 [14] YUAN C, XU K, SUN J, et al. Ammonium, nitrate, and urea play different roles for lipid accumulation in the nervonic acid-producing microalgae Mychonastes afer HSO-3-1[J]. J Appl Phycol, 2018, 30(2): 793-801. doi: 10.1007/s10811-017-1308-y [15] FENG X, YONG F, FUHONG M, et al. Naphthylacetic acid and tea polyphenol application promote biomass and lipid production of nervonic acid-producing microalgae[J]. Front Plant Sci, 2018, 9: 506. doi: 10.3389/fpls.2018.00506 [16] LI S, SHI X, LEPÈRE C, et al. Unexpected predominance of photosynthetic picoeukaryotes in shallow eutrophic lakes[J]. J Plankton Res, 2016, 38(4): 830-842. doi: 10.1093/plankt/fbw042 [17] LIU C, SHI X, WU F, et al. Genome analyses provide insights into the evolution and adaptation of the eukaryotic picophytoplankton Mychonastes homosphaera[J]. BMC Genomics, 2020, 21(1): 477. doi: 10.1186/s12864-020-06891-6 [18] 范勇, 袁程, 刘君寒, 等. 利用微藻Mychonastes afer HSO-3生产神经酸的研究初探 [C]//中国藻类学会第八次会员大会暨第十六次学术讨论会论文摘要集. 上海: 中国海洋湖沼学会, 2011: 229. [19] 王性炎, 王姝清. 神经酸研究现状及应用前景[J]. 中国油脂, 2010, 35(3): 1-5. [20] HU D D, CUI Y J, ZHANG J. Nervonic acid ameliorates motor disorder in mice with Parkinson's disease[J]. Neurochem J, 2021, 15(3): 317-324. doi: 10.1134/S1819712421030065 [21] FAN Y, MENG H M, HU G R, et al. Biosynthesis of nervonic acid and perspectives for its production by microalgae and other microorganisms[J]. Appl Microbiol Biotechnol, 2018, 102(7): 3027-3035. doi: 10.1007/s00253-018-8859-y [22] SFORZA E, CIPRIANI R, MOROSINOTTO T, et al. Excess CO2 supply inhibits mixotrophic growth of Chlorella protothecoides and Nannochloropsis salina[J]. Bioresource Technol, 2012, 104: 523-529. doi: 10.1016/j.biortech.2011.10.025 [23] CURIEN G, LYSKA D, GUGLIELMINO E, et al. Mixotrophic growth of the extremophile Galdieria sulphuraria reveals the flexibility of its carbon assimilation metabolism[J]. New Phytol, 2021, 231(1): 326-338. doi: 10.1111/nph.17359 [24] OLIVEIRA C Y B, D'ALESSANDRO E B, ANTONIOSI N R, et al. Synergistic effect of growth conditions and organic carbon sources for improving biomass production and biodiesel quality by the microalga Choricystis minor var. minor[J]. Sci Total Environ, 2021, 759: 143476. doi: 10.1016/j.scitotenv.2020.143476 [25] MARTINEZ F, ORUS M I. Interactions between glucose and inorganic carbon metabolism in Chlorella vulgaris strain UAM 101[J]. Plant Physiol, 1991, 95(4): 1150-1155. doi: 10.1104/pp.95.4.1150 [26] 徐峰. 产神经酸微藻Mychonastes afer的藻种改良和培养模式优化 [D]. 青岛: 青岛农业大学, 2018: 50-57. [27] 袁程. 微藻生产生物柴油评价及其高产条件的优化 [D]. 保定: 河北农业大学, 2011: 34-42. [28] LIU J, HUANG J, FAN K W, et al. Production potential of Chlorella zofingienesis as a feedstock for biodiesel[J]. Bioresour Technol, 2010, 101(22): 8658-8663. doi: 10.1016/j.biortech.2010.05.082 [29] SUN N, WANG Y, LI Y T, et al. Sugar-based growth, astaxanthin accumulation and carotenogenic transcription of heterotrophic Chlorella zofingiensis (Chlorophyta)[J]. Process Biochem, 2008, 43(11): 1288-1292. doi: 10.1016/j.procbio.2008.07.014 [30] DOUCHA J, LÍVANSKÝ K. Production of high-density Chlorella culture grown in fermenters[J]. J Appl Phycol, 2012, 24(1): 35-43. doi: 10.1007/s10811-010-9643-2 [31] 杨树玲. 基于代谢组学技术研究不同营养方式对普通小球藻生理代谢的影响 [D]. 兰州: 西北师范大学, 2020: 2-7. [32] JEONGEUN P, SHAN Z, HIEP H T, et al. The contribution ratio of autotrophic and heterotrophic metabolism during a mixotrophic culture of Chlorella sorokiniana[J]. Int J Environ Res Public Health, 2021, 18(3): 1353. doi: 10.3390/ijerph18031353 [33] VIDOTTI A D.S, RIAÑO-PACHÓN D M, MATTIELLO L, et al Analysis of autotrophic, mixotrophic and heterotrophic phenotypes in the microalgae Chlorella vulgaris using time-resolved proteomics and transcriptomics approaches[J]. Algal Res, 2020, 51: 102060. [34] 刘晓娟. 三角褐指藻的自养、兼养和异养特性研究 [D]. 广州: 暨南大学, 2008: 58-88. [35] CAMPBELW J L, ALLEN L H, BOWES G. Effects of CO2 concentration on Rubisco activity, amount, and photosynthesis in soybean leaves[J]. Plant physiol, 1988, 88(4): 1310-1316. doi: 10.1104/pp.88.4.1310 -