Mutation and selection of high squalene production yeast Pseudozyma sp. induced by carbon-ions beam irradiation and its electrotransfor-mation
-
摘要: 为进一步提高角鲨烯产量,以海洋产角鲨烯类酵母 (Pseudozyma sp.) SD301为出发菌株,采用碳离子 (12C6+) 束诱变技术选育高产角鲨烯的突变菌株,并对突变菌株的电转化条件进行优化。利用100 μmol·L−1过氧化氢 (H2O2) 作为筛选压力,在12C6+束辐照剂量为120 Gy时,获得了比出发菌株具有更高角鲨烯产量的突变株PS120,该突变株在培养3 d后,角鲨烯产量达到1.33 g·L−1,角鲨烯质量 (细胞质量) 达到41.31 mg·g−1。利用绿色荧光蛋白EGFP作为表征标记,对PS120进行电转化条件优化,酶切、电泳和测序研究结果表明900 V电压条件下可成功将编码EGFP的基因转入到PS120细胞中,通过激光共聚焦显微镜进一步证实EGFP蛋白在该细胞中高水平表达。Abstract: In order to improve the yield of squalene, using Pseudozyma sp. SD301 as the starting strain, we selected the mutant strain with high squalene yield by carbon-ions (12C6+) beam irradiation technology, and optimized the electrotransformation conditions of the mutant strain. We used 100 μmol·L−1 H2O2 as the screening pressure. When the carbon heavy ion beam irradiation dose was 120 Gy, the mutant PS120 was obtained with higher squalene yield than the original strain. After 3 days of culture, the squalene yield of the mutant reached 1.33 g·L−1 and the squalene mass reached 41.31 mg·g−1. The green fluorescent protein EGFP was used as the characterization marker to optimize the electrotransformation conditions of PS120. The results of enzyme digestion, electrophoresis and sequencing show that the gene encoding EGFP could be successfully transferred into PS120 cells under 900 V voltage. The high-level expression of EGFP protein in PS120 cells was further confirmed by laser confocal microscope.
-
Key words:
- Squalene /
- Pseudozyma /
- Carbon-ions beam /
- Mutagenesis /
- Electrotransformation
-
表 1 本研究中质粒构建所用引物
Table 1. Oligonucleotides used in vector construction
引物
Primer序列 (5'—3')
Sequence (5'—3')Hph-F CGGGATCCATGAAAAAGCCTGAACTCACCGC Hph-R CCGCTCGAGTTCCTTTGCCCTCGGACGAG P-C-F GGTCGCGTTCCTGAAACGCAG P-C-R CAAGCAAGGTTTTCAGTATAAT P-hph-C-F ATATGTCCTGCGGGTAAATAGC P-hph-C-R ATGCCTCCGCTCGAAGTAGCGCGTC P-egfp-F ACTCGTCCGAGGGCAAAGGAAATGGTGAGCAAGGGCGAGGAG P-egfp-R CCCTCTAGATGCATGCTCGAGCTTGTACAGCTCGTCCATGCC P-egfp-C-F ATCGTCCGATCCGGAGCCGGGACTGT -
[1] HILL R A, CONNOLLY J D. Triterpenoids[J]. Nat Prod Rep, 2018, 35(12): 1294-1329. doi: 10.1039/C8NP00029H [2] POPA O, BĂBEANU N E, POPA I, et al. Methods for obtaining and determination of squalene from natural sources[J]. Biomed Res Int, 2015, 2015: 367202-367217. [3] LOU-BONAFONTE J M, MARTÍNEZ-BEAMONTE R, SANCLEMENTE T, et al. Current insights into the biological action of squalene[J]. Mol Nutr Food Res, 2018, 62(15): 1800136-1800151. doi: 10.1002/mnfr.201800136 [4] TETALI S D. Terpenes and isoprenoids: a wealth of compounds for global use[J]. Planta, 2019, 249(1): 1-8. doi: 10.1007/s00425-018-3056-x [5] GARAIOVA M, HAPALA I. Squalene: from traditional medicine to modern applications[J]. Chem Listy, 2018, 112(7): 427-433. [6] 甘桢, 王蓓, 鲁义善, 等. 罗非鱼免疫学研究进展[J]. 生物技术通报, 2014(11): 32-39. [7] EMBREGTS W E C, FORLENZA M. Oral vaccination of fish: lessons from humans and veterinary species[J]. Dev Comp Immunol, 2016, 64: 118-137. [8] 杨思静, 刘小芳, 刘建志, 等. 不同品种鲨鱼肝脂质组成特征分析[J]. 食品工业科技, 2020, 41(12): 307-312. [9] GOHIL N, BHATTACHARJEE G, KHAMBHATI K, et al. Engineering strategies in microorganisms for the enhanced production of squalene: advances, challenges and opportunities[J]. Front Bioeng Biotech, 2019, 7: 1-24. doi: 10.3389/fbioe.2019.00050 [10] HAN J Y, SEO S H, SONG J M, et al. High-level recombinant production of squalene using selected Saccharomyces cerevisiae strains[J]. J Ind Microbiol Biotechnol, 2018, 45(4): 239-251. doi: 10.1007/s10295-018-2018-4 [11] HOANG M H, HA N C, THOM L T, et al. Extraction of squalene as value-added product from the residual biomass of Schizochytrium mangrovei PQ6 during biodiesel producing process[J]. J Biosci Bioeng, 2014, 118(6): 632-639. [12] SONG X J, WANG X L, TAN Y Z, et al. High production of squalene using a newly isolated yeast-like strain Pseudozyma sp. SD301[J]. J Agric Food Chem, 2015, 63(38): 8445-8451. doi: 10.1021/acs.jafc.5b03539 [13] ENGLUND E, PATTANAIK B, UBHAYASEKERA S J K, et al. Production of squalene in Synechocystis sp. PCC 6803[J]. PLoS ONE, 2014, 9(3): e90270. doi: 10.1371/journal.pone.0090270 [14] 陈积红, 胡伟, 李文建. 重离子束辐照在优良工业微生物新菌株创建中的应用实践[J]. 生物产业技术, 2017(1): 46-50. [15] 郭晓鹏. 基于酿酒酵母模型的重离子束辐射诱变机理及线粒体相关功能研究[D]. 兰州: 中国科学院近代物理研究所, 2020: 39-41. [16] CHENG Y R, SUN Z J, CUI G Z, et al. A new strategy for strain improvement of Aurantiochytrium sp. based on heavy-ions mutagenesis and synergistic effects of cold stress and inhibitors of enoyl-ACP reductase[J]. Enzyme Microb Technol, 2016, 93/94: 182-190. doi: 10.1016/j.enzmictec.2016.08.019 [17] LIU G S, LI T, ZHOU W, et al. The yeast peroxisome: a dynamic storage depot and subcellular factory for squalene overproduction[J]. Metab Eng, 2020, 57: 151-161. doi: 10.1016/j.ymben.2019.11.001 [18] MARCHAND G, FORTIER E, NEVEU B, et al. Alternative methods for genetic transformation of Pseudozyma antarctica, a basidiomycetous yeast-like fungus[J]. J Microbiol Methods, 2007, 70(3): 519-527. doi: 10.1016/j.mimet.2007.06.014 [19] KONISHI M, YOSHIDA Y, IKARASHI M, et al. Efficient and simple electro-transformation of intact cells for the basidiomycetous fungus Pseudozyma hubeiensis[J]. Biotechnol Lett, 2015, 37(8): 1679-1685. doi: 10.1007/s10529-015-1837-x [20] MORITA T, HABE H, FUKUOKA T, et al. Convenient transformation of anamorphic Basidiomycetous yeasts belonging to genus Pseudozyma induced by electroporation[J]. J Biosci Bioeng, 2007, 104(6): 517-520. doi: 10.1263/jbb.104.517 [21] LAN C Z, WANG Z J, WANG Z, et al. Optimizing eicosapentaenoic acid production by grafting a heterologous polyketide synthase pathway in the Thraustochytrid aurantiochytrium[J]. J Agric Food Chem, 2020, 68(40): 11253-11260. doi: 10.1021/acs.jafc.0c04299 [22] CHANG M H, KIM H J, JAHNG K Y, et al. The isolation and characterization of Pseudozyma sp. JCC 207, a novel producer of squalene[J]. Appl Microbiol Biotechnol, 2008, 78(6): 963-972. doi: 10.1007/s00253-008-1395-4 [23] 王冬平. 代谢工程改造解脂耶氏酵母提高角鲨烯产量的研究[D]. 长沙: 湖南农业大学, 2020: 35. [24] 王均华. 酿酒酵母萜类化合物高效合成菌株的构建与代谢调控[D]. 无锡: 江南大学, 2021: 34. [25] 李宁, 刘波, 刁梦雪, 等. 产角鲨烯细胞工厂的构建及关键基因的筛选、克隆与表达[J]. 生物工程学报, 2021, 37(8): 2813-2824. [26] KAYA K, NAKAZAWA A, MATSUURA H, et al. Thraustochytrid Aurantiochytrium sp. 18W-13a accummulates high amounts of squalene[J]. Biosci Biotechnol Biochem, 2011, 75(11): 2246-2248. doi: 10.1271/bbb.110430 [27] RAU E M, BARTOSOVA Z, KRISTIANSEN K A, et al. Overexpression of two new acyl-coa: diacylglycerol acyltransferase 2-like acyl-coa: sterol acyltransferases enhanced squalene accumulation in Aurantiochytrium limacinum[J]. Front Microbiol, 2022, 13: 822254. doi: 10.3389/fmicb.2022.822254 [28] PATEL A, ROVA U, CHRISTAKOPOULOS P, et al. Simultaneous production of DHA and squalene from Aurantiochytrium sp. grown on forest biomass hydrolysates[J]. Biotechnol Biofuels, 2019, 12(1): 255-266. doi: 10.1186/s13068-019-1593-6 [29] PATEL A, ROVA U, CHRISTAKOPOULOS P, et al. Mining of squalene as a value added byproduct from DHA producing marine thraustochytrid cultivated on food waste hydrolysate[J]. Sci Total Environ, 2020, 736: 139691-139698. doi: 10.1016/j.scitotenv.2020.139691 [30] ZHU Z T, DU M M, GAO B, et al. Metabolic compartmentalization in yeast mitochondria: burden and solution for squalene overproduction[J]. Metab Eng, 2021, 68: 232-245. doi: 10.1016/j.ymben.2021.10.011 [31] LIU H, WANG F, DENG L, et al. Genetic and bioprocess engineering to improve squalene production in Yarrowia lipolytica[J]. Bioresour Technol, 2020, 317: 123991-123998. doi: 10.1016/j.biortech.2020.123991 [32] TANG W Y, WANG D P, TIAN Y, et al. Metabolic engineering of Yarrowia lipolytica for improving squalene production[J]. Bioresour Technol, 2021, 323: 124652-124657. doi: 10.1016/j.biortech.2020.124652 [33] MENG Y H, SHAO X X, WANG Y, et al. Extension of cell membrane boosting squalene production in the engineered Escherichia coli[J]. Biotechnol Bioeng, 2020, 117(11): 3499-3507. doi: 10.1002/bit.27511 [34] ZHOU C Y, LI M J, LU S R, et al. Engineering of cis-element in Saccharomyces cerevisiae for efficient accumulation of value-added compound squalene via down regulation of the downstream metabolic flux[J]. J Agric Food Chem, 2021, 69(42): 12474-12484. doi: 10.1021/acs.jafc.1c04978 -