Preparation and characteristic research of immobilized patatin lipase suitable for fish oil processing
-
摘要: Patatin (马铃薯糖蛋白) 是一种酯水解酶,具有脂肪酶催化活性,可应用于脂肪的水解加工。针对游离Patatin酯酶稳定性差且工业生产中酶很难重复利用的缺点,利用ConA (刀豆蛋白A) 耦联的纳米磁珠材料固定化Patatin酯酶,以提高其工业化应用的催化特性。通过研究,发现ConA耦联的纳米磁珠的平均吸附率为24.50%。同时筛选出适宜的Patain酯酶固定化材料为PAA (聚丙烯酸)-Fe3O4,其最优固定化条件为固定化时间47.2 min,固定化温度25.3 ℃,磁珠添加量为3.0 mg·mL−1。Patain酯酶固定化纳米磁珠在40.0 ℃、pH 7.0时水解底物活性最高,且相比游离Patatin酯酶,其温度耐受性提高了123%左右,pH耐受性提高了47%左右,连续反应5次后仍保留56.60%酶活力,说明纳米磁珠固定化后提高了Patatin酯酶的酶催化特性,为其在水产品如鱼油中的加工应用提供了一种催化性能更强的新酶体系。Abstract: Patatin, an ester hydrolase with lipase catalytic activity, can be applied to the hydrolysis of fat. To solve the problems of poor stability of free patatin lipase and difficult reuse in industrial production, we immobilized patatin lipase by coupled nano (ConA) magnetic beads to improve its catalytic characteristics of its industrial application. The results show that the average adsorption rate of ConA magnetic beads was 24.50%, and PAA-Fe3O4 was determined as the most suitable immobilization material. The optimal immobilization conditions are as follows: immobilization time of 47.2 min, immobilization temperature of 25.3 ℃, magnetic bead addition of 3.0 mg·mL−1. Immobilized patain had the highest hydrolytic substrate activity at 40.0 ℃ and pH 7.0. Compared with free patatin lipase, its temperature tolerance increased by about 123% and the pH tolerance increased by about 47%. After five consecutive reactions, 56.60% patatin activity was still retained, indicating that the immobilized nano magnetic beads improved the enzymatic catalytic characteristics of patatin, which provides a new enzyme system with stronger catalytic performance for its application in the processing of aquatic products such as oil fish.
-
Key words:
- Patatin /
- Lipase /
- Immobilization /
- Enzyme catalytic properties
-
表 1 Patatin酯酶活性测定反应体系
Table 1. Reaction system for patatin lipase activity
试剂
Reagent体积
Volume/μLTris-HCl 缓冲液 Tris-HCl buffer 2.5 PNP-acetate 缓冲液 PNP-acetate buffer 250 Patatin 酯酶溶液 Patatin lipase solution 100 氯化钙溶液 CaCl2 solution 100 表 2 固定条件Box-Benhnken响应面分析试验因素与水平
Table 2. Box-Benhnken response surface factors and levels of immobilization conditions
水平
LevelA B C t/min 温度
Temperature/℃磁珠添加量
Magnetic bead
addition/(mg·mL−1)−1 40 20 2.5 0 50 25 3.0 1 60 30 3.5 表 3 磁珠与ConA的偶联实验结果
Table 3. Results of coupling experiment between magnetic beads and ConA
平行
ParallelConA吸附量 (磁珠)
ConA adsorption capacity
(magnetic beads)/(μg·mg−1)吸附率
Adsorption rate/%1 33.17 24.07±0.75 2 33.92 24.61±0.22 3 34.21 24.82±0.66 平均值 Average 33.77 24.50 表 4 Box-Benhnken响应面分析试验设计及结果
Table 4. Box-Benhnken response surface design and experimental results
编号
No.A B C 酶比活力
Enzyme specific vitality/
(104 U·g−1)时间
Time温度
Temperature磁珠添加量
Magnetic bead
addition1 −1 −1 0 2.440 0 2 −1 0 −1 2.144 0 3 −1 0 1 2.240 9 4 −1 1 0 2.609 8 5 0 −1 −1 2.009 6 6 0 −1 1 2.047 0 7 0 0 0 3.101 3 8 0 0 0 3.150 0 9 0 0 0 3.195 8 10 0 0 0 3.200 3 11 0 0 0 3.225 0 12 0 1 −1 2.080 7 13 0 1 1 2.082 0 14 1 −1 0 1.729 6 15 1 0 −1 1.549 3 16 1 0 1 1.658 2 17 1 1 0 1.874 6 表 5 Box-Benhnken响应面分析试验回归模型方差分析表
Table 5. Analysis of variance (ANOVA) and results of Box-Benhnken response surface
方差来源
Variance source平方和
Sum of squares自由度
Degree of freedom均方
Mean squareF P 差异显著性
Significance of difference模型 5.584 6 9 0.620 5 157.638 0 <0.000 1 *** A 0.860 0 1 0.860 0 218.482 3 <0.000 1 *** B 0.022 1 1 0.022 1 5.625 7 0.049 5 * C 0.007 5 1 0.007 5 1.898 4 0.210 7 AB 0.000 2 1 0.000 2 0.039 1 0.848 9 AC 0.000 0 1 0.000 1 0.009 1 0.926 5 BC 0.000 3 1 0.000 3 0.082 8 0.781 9 A2 1.435 3 1 1.435 3 364.630 0 <0.000 1 *** B2 0.768 2 1 0.768 2 195.146 7 <0.000 1 *** C2 2.019 3 1 2.019 3 513.003 2 <0.000 1 *** 残差 Residual 0.027 6 7 0.003 9 失拟项 Lack of fit 0.017 9 3 0.006 0 2.482 5 0.200 2 误差 Error 0.009 6 4 0.002 4 总离差 Total deviation 5.612 2 16 $R^2 $=0.995 1; $R_{{\rm{Adj}}}^2$=0.988 8; $R_{{\rm{Pred}}}^2$=0.946 2; Adeq Precision=34.036 5 注:*. 差异显著 (P<0.05);**. 差异高度显著 (P<0.01);***. 差异极其显著 (P<0.001)。 Note: *. Significant difference (P<0.05); **. Very significant difference (P<0.01); ***. Extremely significant difference (P<0.001). 表 6 磁珠固定Patatin酯酶前后ζ-电势
Table 6. ζ- potential of patatin lipase before and after magnetic beads immobilization
组别
Group平均ζ-电势
Average ζ- potential/mV固定前 Before immobilization 86.673±4.233 固定后 After immobilization 56.300±1.103 表 7 固定化前后Patatin酯酶温度耐受性的回归分析
Table 7. Regression analysis of temperature tolerance before and after patatin lipase immobilization
酶种类
Enzyme
type回归方程
Regression
equation相关系数
Correlation
coefficientIC50/℃ 游离Patatin酯酶
Free patatin lipasey=181−2.65xy 0.974 18.87 固定化Patatin酯酶
Immobilized patatin lipasey=135−1.19xy 0.996 42.01 表 8 固定化前后Patatin酯酶pH耐受性的回归分析
Table 8. Regression analysis pH tolerance before and after patatin lipase immobilization
酶种类
Enzyme type回归方程
Regression
equation相关系数
Correlation
coefficientIC50 游离Patatin酯酶
Free patatin lipasey=−433+148x−10.5x2 0.886 1.915 固定化Patatin酯酶
Immobilized patatin lipasey=−225+84.06x−5.54x2 0.904 2.815 -
[1] 韩生义. 产脂肪酶微生物的筛选及脂肪酶基因的克隆表达[D]. 兰州: 甘肃农业大学, 2016: 1. [2] LI D, WANG W, LIU P, et al. Immobilization of Candida antarctica lipase B onto ECR1030 resin and its application in the synthesis of n-3 PUFA-rich triacylglycerols[J]. Eur J Lipid Sci Tech, 2017, 119(12): 1700266. doi: 10.1002/ejlt.201700266 [3] LIU S, FENG L, JIANG W D, et al. Impact of exogenous lipase supplementation on growth, intestinal function, mucosal immune and physical barrier, and related signaling molecules mRNA expression of young grass carp (Ctenopharyngodon idella)[J]. Fish Shellfish Immun, 2016, 55: 88-105. doi: 10.1016/j.fsi.2016.05.006 [4] 苏瑞华. 脂肪酶对鲶鱼鱼糜凝胶特性的影响及机制[D]. 无锡: 江南大学, 2019: 15-21. [5] 郑毅, 郑楠, 卓进锋, 等. 利用脂肪酶提高鱼油中多不饱和脂肪酸 (PUFAs) 甘油酯[J]. 应用与环境生物学报, 2005(5): 53-56. [6] RACUSEN D, FOOTE M. A major soluble glycoprotein of potato tubers[J]. J Food Biochem, 1980, 4(1): 43-52. doi: 10.1111/j.1745-4514.1980.tb00876.x [7] FU Y, LIU W N, SOLADOYE O P. Towards potato protein utilisation: insights into separation, functionality and bioactivity of patatin[J]. Int J Food Sci Tech, 2020, 55(6): 2314-2322. doi: 10.1111/ijfs.14343 [8] SCHMIDT J M, DAMGAARD H, GREVE-POULSEN M, et al. Foam and emulsion properties of potato protein isolate and purified fractions[J]. Food Hydrocolloid, 2018, 74: 367-378. doi: 10.1016/j.foodhyd.2017.07.032 [9] DELAHAIJE R J B M, WIERENGA P A, GIUSEPPIN M L F, et al. Improved emulsion stability by succinylation of patatin is caused by partial unfolding rather than charge effects[J]. J Colloid Interf Sci, 2014, 430: 69-77. doi: 10.1016/j.jcis.2014.05.019 [10] CREUSOT N, WIERENGA P A, LAUS M C, et al. Rheological properties of patatin gels compared with β-lactoglobulin, ovalbumin, and glycinin[J]. J Sci Food Agr, 2011, 91(2): 253-261. doi: 10.1002/jsfa.4178 [11] GAMBUTI A, RINALDI A, MOIO L. Use of patatin, a protein extracted from potato, as alternative to animal proteins in fining of red wine[J]. Eur Food Res Technol, 2012, 235(4): 753-765. doi: 10.1007/s00217-012-1791-y [12] SPELBRINK R E J, LENSING H, EGMOND M R, et al. Potato patatin generates short-chain fatty acids from milk fat that contribute to flavour development in cheese ripening[J]. Appl Biochem Biotech, 2015, 176(1): 231-243. [13] FU Y, WU W, ZHU M, et al. In silico assessment of the potential of patatin as a rrecursor of bioactive peptides[J]. J Food Biochem, 2016, 40(3): 366-370. doi: 10.1111/jfbc.12213 [14] 冯建华, 牛建峰, 黄爱优, 等. 基于R-藻红蛋白及硫酸多糖提取的次等紫菜综合利用技术[J]. 海洋科学, 2015, 39(12): 77-85. doi: 10.11759/hykx20141017002 [15] NEERAJ G, RAVI S, SOMDUTT R, et al. Immobilized inulinase: a new horizon of paramount importance driving the production of sweetener and prebiotics[J]. Crit Rev Biotechnol, 2018, 38(3): 409-422. doi: 10.1080/07388551.2017.1359146 [16] 朱衡, 林海蛟, 张继福, 等. 氨基载体共价结合固定化海洋假丝酵母脂肪酶[J]. 中国生物工程杂志, 2019, 39(7): 71-78. [17] 吴乔羽, 徐姗楠, 翁晴, 等. 马铃薯酯酰基水解酶的特性研究[J]. 食品与机械, 2019, 35(11): 41-46. [18] 姚春艳, 孙莹, 毕伟伟, 等. 马铃薯淀粉废水中蛋白质回收方法综述[J]. 食品安全导刊, 2018(24): 128-129. [19] WU J H, WU Q Y, YANG D L, et al. Patatin primary structural properties and effects on lipid metabolism[J]. Food Chem, 2021, 344: 128661. doi: 10.1016/j.foodchem.2020.128661 [20] 苏新清, 李源勋, 叶庆玲, 等. 交联聚丙烯酸对牛血清白蛋白的固定化[J]. 河北大学学报(自然科学版), 2001(2): 154-157. [21] 孙莹, 魏冬旭, 姚春艳, 等. 不同处理条件对马铃薯糖蛋白Patatin构象的影响研究[J]. 食品工业科技, 2017, 38(17): 80-83,98. [22] van KONINGSVELD G A, GRUPPEN H, de JONGH H H, et al. Effects of pH and heat treatments on the structure and solubility of potato proteins in different preparations[J]. J Agric Food Chem, 2001, 49(10): 4889-4897. doi: 10.1021/jf010340j [23] 甘露菁, 田韩, 荣菡, 等. 磁性纳米Fe3O4-SiO2载体的改性及其在脂肪酶固定化中的应用[J]. 食品工业, 2020, 41(2): 185-189. -