Comparative research of plant hormones and alginate oligosaccharides in seaweed extracts by different processing methods
-
摘要: 在海带 (Laminaria japonica) 提取加工领域,生物酶解法已成为理想的化学法替代工艺。为评估化学、酶解和酶解发酵联合工艺的提取效果,对3种海带提取物中的植物激素和海藻酸寡糖含量以及分子量分布情况进行了比较研究。采用间羟基二苯法测定海藻酸盐质量百分比,高效液相色谱法 (HPLC) 测定海藻酸寡糖分子量,高效液相色谱-串联质谱法 (HPLC-MS) 测定植物激素含量。结果显示,化学提取法获得的海带提取物的海藻酸寡糖提取率最低 (41.99%),分子量约为200~400 D,而酶解提取法和酶解发酵联合提取法获得的提取率分别为90.75%和82.21%,分子量为200~1 600 D。吲哚乙酸 (IAA) 是3种提取物中质量分数最高的植物激素 (2.64~64.59 ng·g−1),其次为茉莉酸 (JA, 0.05~13.09 ng·g−1)。酶解发酵联合法海带提取物的植物激素浓度高于其他2种提取物。综合比较植物激素和海藻酸寡糖提取率,酶解发酵联用工艺比传统化学工艺和酶解工艺更适用于农用海带提取物的制备。Abstract: In seaweed (Laminaria japonica) extraction processing, biological enzymolysis processing has been an ideal alternative to traditional chemical extraction method. In order to evaluate the extraction effects of three different processing methods, we treated the seaweed by chemical processing (CP), enzymolysis processing (EP) as well as combined enzymolysis and microbial fermentation processing (CEMP). Besides, we compared the contents of plant hormones and algiante oligosaccharides in addition to the molecular mass distribution in three kinds of seaweed extracts. We determined the alginate content, molecular mass of alginate oligosaccharide and plant hormones contents by m-hydroxydiphenyl method, HPLC and HPLC-MS, respectively. The results show that the CP method had the lowest extraction rate of alginate oligosaccharides (41.99%) with molecular mass of 200−400 D, while the EP method and CEMP method had relatively higher extraction rate of alginate oligosaccharides (90.75% and 82.21%) with molecular mass of 200−1 600 D. Indoleacetic acid (IAA) was the most abundant plant hormone among all the three extracts, ranging from 2.64 to 64.59 ng·g−1, followed by jasmonic acid (JA, 0.05−13.09 ng·g−1). The plant hormone content of the extract by CEMP method was higher than that of the other two extracts. Based on the comprehensive comparison of extraction rate of plant hormones and alginate oligosaccharides, the CEMP method is more suitable for the preparation of agricultural seaweed extract than the CP method and EP methods.
-
Key words:
- Seaweed extract /
- Laminaria japonica /
- Enzymolysis /
- Plant hormones /
- Algiante oligosaccharides
-
表 1 干海带原料与不同提取工艺制备样品中植物激素质量分数
Table 1. Contents of 11 PHS species in seaweed material and seaweed extracts by different methods
ng·g−1 植物激素种类
Plant hormone
species干海带原料
Dry seaweed
material化学法海带提取物
Seaweed extract
by CP酶解法海带提取物
Seaweed extract
by EP酶解发酵联用法
海带提取物
Seaweed extract by CEMP吲哚乙酸 Indole-3-acetic acid (IAA) 31.26±1.72 4.46±0.42 2.64±0.17 64.59±4.05 吲哚丁酸 3-Indolebutyric acid (IBA) 0.19±0.02 0.01±0.005 — 0.13±0.02 反式玉米核苷酸 Trans-Zeatin Riboside (tZR) 0.10±0.08 — — — 玉米素 Cis-Zeatin (cZ) 0.58±0.06 0.03±0.005 — 0.12±0.01 脱落酸 Abscisic acid (ABA) 0.62±0.08 — 0.09±0.008 1.28±0.23 茉莉酸 Jasmonic acid (JA) 0.22±0.03 0.05±0.01 0.19±0.16 13.09±1.85 水杨酸 Salicylic acid (SA) 10.29±1.48 0.46±0.09 1.07±0.12 0.44±0.1 赤霉素A1 gibberellin A1 (GA1) — 0.08±0.006 0.08±0.01 0.03±0.005 赤霉素A3 gibberellin A3 (GA3) 0.02±0.01 0.02±0.003 — — 赤霉素A4 gibberellin A4 (GA4) 0.92±0.03 0.03±0.004 0.21±0.016 — 赤霉素A7 gibberellin A7 (GA7) — 0.02±0.002 — 0.34±0.03 注:—. 未检出。 Note: —. Undetected. -
[1] 马德源, 马云飞, 于金慧, 等. 海藻肥在现代农业生产中的研究进展[J]. 山东农业科学, 2020, 52(8): 145-151. [2] KHAN W, RAYIRATH U P, SUBRAMANIAN S, et al. Seaweed extracts as biostimulants of plant growth and development[J]. J Plant Growth Regul, 2009, 28(4): 386-399. doi: 10.1007/s00344-009-9103-x [3] SHARMA H S S, FLEMING C, SELBY C, et al. Plant biostimulants: a review on the processing of macroalgae and use of extracts for crop management to reduce abiotic and biotic stresses[J]. J Appl Phycol, 2014, 26(1): 465-490. doi: 10.1007/s10811-013-0101-9 [4] 王修康, 马金昭, 孙瑶, 等. 新型海藻肥对玉米生长发育及其产量的影响[J]. 云南农业大学学报(自然科学), 2021, 36(3): 524-531. [5] 孙晓, 尹皓婵, 张占田, 等. 海带提取物对水稻产量及养分利用的影响[J]. 江苏农业科学, 2020, 48(16): 100-103. [6] 段永华, 邓成忠, 左丽娟, 等. 海藻肥不同施用量对马铃薯产量和效益的影响[J]. 云南农业科技, 2021(1): 6-7. doi: 10.3969/j.issn.1000-0488.2021.01.003 [7] 刘金萍, 刘艳丽, 邵雨晴, 等. 海藻复合肥对夏玉米产量及养分吸收利用的影响[J]. 河南农业大学学报, 2021, 55(3): 429-434. [8] 于会丽, 徐变变, 徐国益, 等. 海带提取物复合制剂适宜用量提高桃果实产量、品质及养分吸收量[J]. 植物营养与肥料学报, 2021, 27(9): 1656-1664. doi: 10.11674/zwyf.2021058 [9] 郭蓉, 龚一富, 姜洁, 等. 海藻生物肥对火龙果生长、产量和品质的影响[J]. 核农学报, 2018, 32(12): 2455-2461. doi: 10.11869/j.issn.100-8551.2018.12.2455 [10] CHEN D, ZHOU W, YANG J, et al. Effects of seaweed extracts on the growth, physiological activity, cane yield and sucrose content of sugarcane in China[J]. Front Plant Sci, 2021, 12: 659130. [11] LAURA G C, FERNANDO S, GUSTAVO H, et al. Effect of seaweed liquid extracts from Ulva lactuca on seedling growth of mung bean (Vigna radiata)[J]. J Appl Phycol, 2017, 29(5): 2479-2488. doi: 10.1007/s10811-017-1082-x [12] 刘海燕, 李岩, 陈建伟. 海藻多糖对玉米种子萌发及幼苗生理生化特性的影响[J]. 现代农业科技, 2019(18): 3-5. doi: 10.3969/j.issn.1007-5739.2019.18.002 [13] 崔维香. 海藻提取液对种子萌发、幼苗生长和果实品质的影响[D]. 舟山: 浙江海洋大学, 2017: 1-3. [14] YAO Y, WANG X, CHEN B, et al. Seaweed extract improved yields, leaf photosynthesis, ripening time, and net returns of tomato (Solanum lycopersicum Mill.)[J]. ACS Omega, 2020, 5(8): 4242-4249. doi: 10.1021/acsomega.9b04155 [15] ZHANG Y, YIN H, ZHAO X, et al. The promoting effects of alginate oligosaccharides on root development in Oryza sativa L. mediated by auxin signaling[J]. Carbohydr Polym, 2014, 113: 446-454. doi: 10.1016/j.carbpol.2014.06.079 [16] XU X, IWAMOTO Y, KITAMURA Y, et al. Root growth-promoting activity of unsaturated oligomeric uronates from alginate on carrot and rice plants[J]. Biosci Biotech Bioch, 2003, 67(9): 2022-2025. doi: 10.1271/bbb.67.2022 [17] WANG Z P, WANG P K, MA Y, et al. Laminaria japonica hydrolysate promotes fucoxanthin accumulation in Phaeodactylum tricornutum[J]. Bioresour Technol, 2022, 344: 126117. [18] RAYIRATH P, BENKEL B, MARK HODGES D, et al. Lipophilic components of the brown seaweed, Ascophyllum nodosum, enhance freezing tolerance in Arabidopsis thaliana[J]. Planta, 2009, 230(1): 135-147. doi: 10.1007/s00425-009-0920-8 [19] ALI N, FARRELL A, RAMSUBHAG A, et al. The effect of Ascophyllum nodosum extract on the growth, yield and fruit quality of tomato grown under tropical conditions[J]. J Appl Phycol, 2016, 28(2): 1353-1362. doi: 10.1007/s10811-015-0608-3 [20] ESSERTI S, SMAILI A, RIFAI L A, et al. Protective effect of three brown seaweed extracts against fungal and bacterial diseases of tomato[J]. J Appl Phycol, 2017, 29(2): 1081-1093. doi: 10.1007/s10811-016-0996-z [21] 管宇翔, 韩西红, 张琳, 等. 海藻肥对黄瓜抗旱性的影响及机理研究试验[J]. 种子科技, 2020, 38(21): 3-5. doi: 10.3969/j.issn.1005-2690.2020.21.003 [22] 崔丹丹, 杨锦, 耿银银, 等. 海藻肥对菜心抗旱性的影响及其机理探究[J]. 植物营养与肥料学报, 2021, 27(7): 1185-1197. doi: 10.11674/zwyf.20567 [23] DO R R V, FARIAS D S A L, ALVES D S A, et al. Increased soybean tolerance to water deficiency through biostimulant based on fulvic acids and Ascophyllum nodosum (L. ) seaweed extract[J]. Plant Physiol Bioch, 2021, 158: 228-243. doi: 10.1016/j.plaphy.2020.11.008 [24] 杨春妹, 杨锦, 崔丹丹, 等. 海带酶解和菌解工艺优化及其降解产物对菜心抗逆性的影响[J]. 植物营养与肥料学报, 2021, 27(8): 1432-1444. [25] FORNES F, SÁNCHEZ-PERALES M, GUARDIOLA J L. Effect of a seaweed extract on the productivity of 'de nules' clementine mandarin and navelina orange[J]. Bot Mar, 2002, 45(5): 486-489. [26] DEPUYDT S, HARDTKE C S. Hormone signalling crosstalk in plant growth regulation[J]. Curr biol, 2011, 21(9): 365-373. doi: 10.1016/j.cub.2011.03.013 [27] LI M, MOU H, KONG Q, et al. Bacteriostatic effect of lipopeptides from Bacillus subtilis N-2 on Pseudomonas putida using soybean meal by solid-state fermentation[J]. MLST, 2020, 2(2): 172-180. [28] 农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会. 2021中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2021: 23. [29] BIXLER H J, PORSE H, OLIVEIRA E, et al. A decade of change in the seaweed hydrocolloids industry[J]. J Appl Phycol, 2011, 23(3): 321-335. doi: 10.1007/s10811-010-9529-3 [30] 张兰婷, 韩立民. 我国海藻产业发展面临的问题及政策建议[J]. 中国渔业经济, 2017, 35(6): 89-95. doi: 10.3969/j.issn.1009-590X.2017.06.012 [31] CRAIGIE J S, OLIVEIRA E, CABELLO-PASINI A, et al. Seaweed extract stimuli in plant science and agriculture[J]. J Appl Phycol, 2011, 23(3): 371-393. doi: 10.1007/s10811-010-9560-4 [32] FALKEBORG M, CHEONG L Z, GIANFICO C, et al. Alginate oligosaccharides: enzymatic preparation and antioxidant property evaluation[J]. Food Chem, 2014, 164: 185-194. doi: 10.1016/j.foodchem.2014.05.053 [33] GAO J, LIN L, SUN B, et al. Comparison study on polysaccharide fractions from Laminaria japonica: structural characterization and bile acid binding capacity[J]. J Agric Food Chem, 2017, 65(44): 9790-9798. doi: 10.1021/acs.jafc.7b04033 [34] KIM H S, LEE C, LEE E Y. Alginate lyase: structure, property, and application[J]. Biotechnol Bioproc E, 2011, 16(5): 843-851. doi: 10.1007/s12257-011-0352-8 [35] ZHU B, YIN H. Alginate lyase: review of major sources and classification, properties, structure-function analysis and applications[J]. Bioengineered, 2015, 6(3): 125-131. doi: 10.1080/21655979.2015.1030543 [36] AZIZI N, NAJAFPOUR G, YOUNESI H. Acid pretreatment and enzymatic saccharification of brown seaweed for polyhydroxybutyrate (PHB) production using Cupriavidus necator[J]. Int J Biol Macromol, 2017, 101: 1029-1040. doi: 10.1016/j.ijbiomac.2017.03.184 [37] LIU L, WANG Z, ZHENG Z, et al. Secretory expression of an alkaline alginate lyase with heat recovery property in Yarrowia lipolytica[J]. Front Plant Sci, 2021, 12: 710533. [38] GUPTA V, KUMAR M, BRAHMBHATT H, et al. Simultaneous determination of different endogenetic plant growth regulators in common green seaweeds using dispersive liquid-liquid microextraction method[J]. Plant Physiol Bioch, 2011, 49(11): 1259-1263. doi: 10.1016/j.plaphy.2011.08.004 [39] 刘雪梅, 赵鹏, 徐继林, 等. LC-MS同时测定大型海藻中9个植物激素[J]. 药物分析杂志, 2012, 32(10): 1747-1752. [40] FILISETTI-COZZI T M, CARPITA N C. Measurement of uronic acids without interference from neutral sugars[J]. Anal Biochem, 1991, 197(1): 157-162. doi: 10.1016/0003-2697(91)90372-Z [41] STIRK W A, NOVÁK O, STRNAD M, et al. Cytokinins in macroalgae[J]. Plant Growth Regul, 2003, 41(1): 13-24. doi: 10.1023/A:1027376507197 [42] STIRK W A, TARKOWSKÁ D, TUREČOVÁ V, et al. Abscisic acid, gibberellins and brassinosteroids in Kelpak®, a commercial seaweed extract made from Ecklonia maxima[J]. J Appl Phycol, 2014, 26(1): 561-567. doi: 10.1007/s10811-013-0062-z [43] SUBRAMANIAN S, SANGHA J S, GRAY B A, et al. Extracts of the marine brown macroalga, Ascophyllum nodosum, induce jasmonic acid dependent systemic resistance in Arabidopsis thaliana against Pseudomonas syringae pv. tomato DC3000 and Sclerotinia sclerotiorum[J]. Eur J Pathol, 2011, 131(2): 237-248. doi: 10.1007/s10658-011-9802-6 [44] JAYARAJ J, WAN A, RAHMAN M, et al. Seaweed extract reduces foliar fungal diseases on carrot[J]. Crop Prot, 2008, 27(10): 1360-1366. doi: 10.1016/j.cropro.2008.05.005 [45] 马晓颖, 杨镇, 宋艳雨. 等. 高效毛细管电泳-二极管阵列检测法测定微生物代谢产物中的植物激素含量[J]. 江苏农业科学, 2017, 45(8): 169-172. [46] BALDERAS-RUÍZ K A, BUSTOS P, SANTAMARIA R I, et al. Bacillus velezensis 83 a bacterial strain from mango phyllosphere, useful for biological control and plant growth promotion[J]. AMB Expr, 2020, 10(1): 163-172. doi: 10.1186/s13568-020-01101-8 [47] WARGACKI A, LEONARD E, LAKSHMANASWAMY A, et al. An engineered microbial platform for direct biofuel production from brown macroalgae[J]. Science, 2012, 335(6066): 308-313. doi: 10.1126/science.1214547 [48] LI S, WANG Z, WANG L, et al. Combined enzymatic hydrolysis and selective fermentation for green production of alginate oligosaccharides from Laminaria japonica[J]. Bioresour Technol, 2019, 281: 84-89. doi: 10.1016/j.biortech.2019.02.056 [49] HUANG L, ZHOU J, LI X, et al. Characterization of a new alginate lyase from newly isolated Flavobacterium sp. S20[J]. J Ind Microbiol Biotechnol, 2013, 40(1): 113-122. doi: 10.1007/s10295-012-1210-1 [50] INOUE A, TAKADONO K, NISHIYAMA R, et al. Characterization of an alginate lyase, FlAlyA, from Flavobacterium sp. strain UMI-01 and its expression in Escherichia coli[J]. Mar Drugs, 2014, 12(8): 4693-4712. doi: 10.3390/md12084693 [51] PENG Q, ZHANG M, GAO L, et al. Effects of alginate oligosaccharides with different molecular weights and guluronic to mannuronic acid ratios on glyceollin induction and accumulation in soybeans[J]. J Food Sci Technol, 2018, 55(5): 1850-1858. doi: 10.1007/s13197-018-3101-6 [52] CHANDÍA N P, MATSUHIRO B, MEJÍAS E, et al. Alginic acids in Lessonia vadosa: partial hydrolysis and elicitor properties of the polymannuronic acid fraction[J]. J Appl Phycol, 2004, 16(2): 127-133. doi: 10.1023/B:JAPH.0000044778.44193.a8 [53] BAKAEVA M D, CHETVERIKOV S P, KORSHUNOVA T Y, et al. The new bacterial strain Paenibacillus sp. IB-1: a producer of exopolysaccharide and biologically active substances with phytohormonal and antifungal activities[J]. Prikl Biokhim Mikrobiol, 2017, 53(2): 201-208. -