留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高浓度CO2和光周期对浒苔幼苗生长和光合生理的影响

周伟 武卉 黄晶晶 赵希星 王静文 王津果

周伟, 武卉, 黄晶晶, 赵希星, 王静文, 王津果. 高浓度CO2和光周期对浒苔幼苗生长和光合生理的影响[J]. 南方水产科学. doi: 10.12131/20210278
引用本文: 周伟, 武卉, 黄晶晶, 赵希星, 王静文, 王津果. 高浓度CO2和光周期对浒苔幼苗生长和光合生理的影响[J]. 南方水产科学. doi: 10.12131/20210278
ZHOU Wei, WU Hui, HUANG Jingjing, ZHAO Xixing, WANG Jingwen, WANG Jinguo. Effects of elevated CO2 and photoperiod on growth and physiological performance of seedlings of Ulva prolifera[J]. South China Fisheries Science. doi: 10.12131/20210278
Citation: ZHOU Wei, WU Hui, HUANG Jingjing, ZHAO Xixing, WANG Jingwen, WANG Jinguo. Effects of elevated CO2 and photoperiod on growth and physiological performance of seedlings of Ulva prolifera[J]. South China Fisheries Science. doi: 10.12131/20210278

高浓度CO2和光周期对浒苔幼苗生长和光合生理的影响

doi: 10.12131/20210278
基金项目: 江苏省自然资源发展专项资金项目(JSZRHYKJ202001);江苏省政策引导类计划 (苏北科技专项) (SZ-LYG202036);江苏海洋大学人才引进科研基金项目(KQ19068);连云港市“花果山英才计划”-双创博士项目(KK21054);江苏省产学研合作项目(BY2021356);江苏省优势学科建设工程资助项目
详细信息
    作者简介:

    周伟:周 伟 (1985—),男,高级工程师,博士,从事水产育苗和养殖等研究。E-mail: wzhou@jou.edu.cn

    通讯作者:

    王津果 (1989—),女,实验师,博士,从事海洋生物遗传育种研究。E-mail: 2020000035@jou.edu.cn

  • 中图分类号: S 917.3

Effects of elevated CO2 and photoperiod on growth and physiological performance of seedlings of Ulva prolifera

  • 摘要: 浒苔 (Ulva prolifera) 幼苗是绿潮藻天然“种子库”的主要组成部分,在绿潮发生发展过程中发挥重要作用。为揭示浒苔绿潮早期暴发的原因,并为未来浒苔绿潮的预警防控提供基础数据,选取2个CO2浓度 [正常空气的CO2浓度400 μatm (LC) 和加富后的CO2浓度1 000 μatm (HC)] 和3个光周期 [短光照 (LL):10 L∶14 D、正常光照 (ML):12 L∶12 D、长光照 (HL):14 L∶10 D],探索其对浒苔幼苗的生长和光合生理的影响。结果显示,高浓度CO2和长光照显著促进了幼苗生长 (P<0.05);相较ML培养条件下,藻体在HL培养条件下显现出更高的生长速率和较低的呼吸速率;光化学参数受高浓度CO2和光照时间的影响不明显;高浓度CO2和长光照显著降低了叶绿素a、叶绿素b和类胡萝卜素的含量 (P<0.05)。结果表明,CO2和光周期对幼苗的生长及光合生理具有显著影响 (P<0.05),HC、HL促进了幼苗的快速生长,增加了浒苔绿潮暴发的可能性。
  • 图  1  不同CO2和光周期水平下浒苔幼苗相对生长速率变化

    注:不同小写字母表示在LC条件下不同处理间差异显著(P<0.05),不同大写字母表示在HC条件下不同处理间差异显著(P<0.05);*表示同一光周期下不同CO2水平间差异显著(P<0.05);后图同此。

    Figure  1.  Relative growth rate of U. prolifera seedlings under different CO2 and photoperiod conditions

    Note: Different lowercase letters represent significant difference among different treatments under lower CO2 condition (P<0.05), and different capital letters represent significant difference among different treatments under high CO2 condition (P<0.05). Asterisk represent significant difference between low and high CO2 conditions within a photoperiod treatment (P<0.05). The same case in the following figures.

    图  2  不同CO2和光周期水平下浒苔幼苗有效光合量子产率变化

    Figure  2.  Variation in yield of U. prolifera seedlings at different CO2 levels and photoperiod conditions

    图  3  不同CO2和光周期条件下浒苔幼苗的相对电子传递速率 (rETR)

    Figure  3.  rETR values of U. prolifera seedlings under different CO2 and photoperiod conditions

    图  4  不同CO2和光周期水平下浒苔幼苗净光合速率变化

    Figure  4.  Net photosynthetic rate of U. prolifera seedlings under different CO2 and photoperiod conditions

    图  5  不同CO2和光周期水平下浒苔幼苗呼吸速率变化

    Figure  5.  Dark respiration rate of U. prolifera seedlings under different CO2 and photoperiod conditions

    图  6  不同CO2和光周期水平下浒苔幼苗叶绿素a质量分数变化

    Figure  6.  Chl a mass fractions of U. prolifera seedlings under different CO2 and photoperiod conditions

    图  7  不同CO2和光周期水平下浒苔幼苗叶绿素b质量分数变化

    Figure  7.  Chl b mass fractions of U. prolifera seedlings under different CO2 and photoperiod conditions

    图  8  不同CO2和光周期水平下浒苔幼苗类胡萝卜素质量分数变化

    Figure  8.  Car contents of U. prolifera seedlings under different CO2 and photoperiod conditions

    表  1  不同CO2和光周期水平下海水的碳酸盐系统参数

    Table  1.   Parameters of seawater carbonate system under different CO2 and photoperiod conditions

    组别 GrouppHCO2分压
    pCO2
    溶解性无机碳 b(DIC)/(μmol·kg−1)b(HCO3 )/
    (μmol·kg−1)
    LCLL 8.22±0.01a 361.92±12.43a 1992.63±20.00a 1801.45±21.33a
    LCML 8.20±0.02a 387.10±23.49a 2026.25±33.93a 1838.76±36.64a
    LCHL 8.21±0.02a 374.86±19.66a 2012.20±37.71a 1822.57±36.83a
    HCLL 7.86±0.02b 908.57±41.54b 2089.37±34.75b 1973.63±33.03b
    HCML 7.93±0.01c 760.59±32.15c 2082.15±46.47ab 1956.44±44.46b
    HCHL 7.87±0.03b 893.73±42.53b 2104.42±37.06b 1986.47±32.13b
    组别 Group b(CO3 2−)/
    (μmol·kg−1)
    b(CO2)/
    (μmol·kg−1)
    总碱度 b(TA)/
    (μmol·kg−1)
    LCLL 179.24±2.22a 11.94±0.41a 2251.60±16.65a
    LCML 174.72±3.49a 12.78±0.78a 2276.87±27.12a
    LCHL 177.26±6.11a 12.37±0.65a 2267.25±38.27a
    HCLL 85.76±3.50b 29.99±1.37b 2194.97±35.74a
    HCML 100.61±2.63c 25.10±1.06c 2214.06±46.52a
    HCHL 88.45±6.54b 29.50±1.40b 2214.06±46.52a
    注:不同字母表示不同处理间差异显著 (P<0.05)。表4同此。 Note: Different superscript letters represent significant difference (P<0.05). The same case in Fig. 4.
    下载: 导出CSV

    表  2  CO2和光周期对浒苔幼苗相对生长速率的双因素方差分析

    Table  2.   Two-way ANOVA analysis for effect of CO2 and photoperiod on relative growth rate of U. prolifera seedlings

    自由度 dfF显著性 Sig.
    光周期 Photoperiod2400.896 68<0.001
    CO21214.697 48<0.001
    光周期×CO2 Photoperiod×CO2225.877 27<0.001
    误差 Error12
    下载: 导出CSV

    表  3  CO2和光周期对浒苔幼苗有效光合量子产率的双因素方差分析

    Table  3.   Two-way ANOVA analysis for effect of CO2 and photoperiod on yield of U. prolifera seedlings

    自由度 dfF显著性 Sig.
    光周期 Photoperiod 2 64.212 12 <0.001
    CO2 1 203.757 58 <0.001
    光周期×CO2 Photoperiod×CO2 2 12.757 58 0.001 1
    误差 Error 12
    下载: 导出CSV

    表  4  不同CO2和光周期条件下浒苔幼苗的相对电子传递速率 (rETR) 与光强关系的最佳拟合参数

    Table  4.   Best fitted parameters of relationship between rETR and light intensity of U. prolifera seedlings under different CO2 and photoperiod conditions

    LCLLLCMLLCHLHCLLHCMLHCHL
    最大相对电子传递速率 rETRmax22.59±3.18ab19.25±2.79a30.49±5.06b21.68±1.28a13.56±3.59a36.69±3.97b
    光能利用效率 α0.16±0.00a0.19±0.05ab0.26±0.03b0.18±0.05a0.23±0.07a0.41±0.05c
    饱和光强 Ek138.81±20.64a109.04±43.75a120.90±29.12a131.90±47.43a69.36±34.08a91.41±20.22a
    下载: 导出CSV

    表  5  CO2和光周期对浒苔幼苗快速光响应曲线最佳拟合参数的双因素方差分析

    Table  5.   Two-way ANOVA analysis for effect of CO2 and photoperiod on best fitted parameters derived from light response curve of U. prolifera seedlings

    自由度 dfF显著性 Sig.
    最大相对电子传递速率 rETRmax
     光周期 Photoperiod 2 19.590 67 0.001 00
     CO2 1 9.788 51 0.008 71
     光周期×CO2 Photoperiod×CO2 2 3.743 84 0.054 52
     误差 Error 12
    光能利用效率 α
     光周期 Photoperiod 2 9.216 37 0.003 76
     CO2 1 5.973 77 0.030 92
     光周期×CO2 Photoperiod×CO2 2 5.946 1 0.016 05
     误差 Error 12
    饱和光强 Ek
     光周期 Photoperiod 2 2.799 56 0.100 49
     CO2 1 2.477 03 0.141 50
     光周期×CO2 Photoperiod×CO2 2 0.361 05 0.704 27
     误差 Error 12
    下载: 导出CSV

    表  6  CO2和光周期对浒苔幼苗净光合速率和呼吸速率的双因素方差分析

    Table  6.   Two-way ANOVA analysis for effect of CO2 and photoperiod on net photosynthetic rate and dark respiration rate of U. prolifera seedlings

    自由度 dfF显著性 Sig.
    净光合速率 Pn
     光周期 Photoperiod 2 68.179 51 <0.001
     CO2 1 76.312 00 <0.001
     光周期×CO2 Photoperiod×CO2 2 3.605 82 0.059 39
     误差 Error 12
    呼吸速率 Rd
     光周期 Photoperiod 2 32.090 00 <0.001
     CO2 1 52.590 09 <0.001
     光周期×CO2 Photoperiod×CO2 2 8.720 18 0.004 59
     误差 Error 12
    下载: 导出CSV

    表  7  CO2和光周期对浒苔幼苗光合色素 (Chl a, Chl b, Car) 的双因素方差分析

    Table  7.   Two-way ANOVA analysis for effect of CO2 and photoperiod on Chl a, Chl b and Car of U. prolifera seedlings

    自由度 dfF显著性 Sig.
    叶绿素 a Chl a
     光周期 Photoperiod 2 12.627 45 0.001 12
     CO2 1 40.655 96 <0.001
     光周期×CO2 Photoperiod×CO2 2 4.440 73 0.036 02
     误差 Error 12
    叶绿素 b Chl b
     光周期 Photoperiod 2 12.135 15 0.001 31
     CO2 1 39.309 47 <0.001
     光周期×CO2 Photoperiod×CO2 2 4.276 84 0.039 61
     误差 Error 12
    类胡萝卜素 Car
     光周期 Photoperiod 2 9.957 24 0.002 83
     CO2 1 15.286 19 0.002 07
     光周期×CO2 Photoperiod×CO2 2 2.880 35 0.095 13
     误差 Error 12
    下载: 导出CSV
  • [1] ZHANG C, LU J, WU J, et al. Removal of phenanthrene from coastal waters by green tide algae Ulva prolifera[J]. Sci Total Environ, 2017, 609: 1322-1328. doi: 10.1016/j.scitotenv.2017.07.187
    [2] LIN A, SHEN S, WANG J, et al. Reproduction diversity of Enteromorpha prolifera[J]. J Integr Plant Biol, 2008, 50(5): 622-629. doi: 10.1111/j.1744-7909.2008.00647.x
    [3] GAO S, CHEN X Y, YI Q Q, et al. A strategy for the proliferation of Ulva prolifera, main causative species of green tides, with formation of sporangia by fragmentation[J]. PLOS ONE, 2010, 5(1): e8571. doi: 10.1371/journal.pone.0008571
    [4] TAYLOR R, FLETCHER R L, RAVEN J A. Preliminary studies on the growth of selected "green tide" algae in laboratory culture: effects of irradiance, temperature, salinity and nutrients on growth rate[J]. Bot Mar, 2001, 44(4): 327-336.
    [5] LIN A P, SHEN S D, WANG J W, et al. Reproduction diversity of Enteromorpha prolifera[J]. J Integr Plant Biol, 2008, 50(5): 622-629. doi: 10.1111/j.1744-7909.2008.00647.x
    [6] GAO G, BEARDALL J, BAO M L, et al. Ocean acidification and nutrient limitation synergistically reduce growth and photosynthetic performances of a green tide alga Ulva linza[J]. Biogeoences, 2018, 15(11): 3409-3420.
    [7] GATTUSO J P, MAGNAN A, BILLÉ R, et al. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios[J]. Science, 2015, 349(6243): 45-55.
    [8] ZEEBE R E, WOLF-GLADROW D. CO2 in seawater: equilibrium, kinetics, isotopes[J]. J Mar Syst, 2002, 36(3): 269-270.
    [9] CALDEIRA K, WICKETT M E. Oceanography: anthropogenic carbon and ocean pH[J]. Nature, 2003, 425(6956): 365. doi: 10.1038/425365a
    [10] DRING M J. Photocontrol of development in algae[J]. Annu Rev Plant Biol, 1988, 39(1): 157-174. doi: 10.1146/annurev.pp.39.060188.001105
    [11] ROST B, RIEBESELL U, SULTEMEYER D. Carbon acquisition of marine phytoplankton: effect of photoperiod length[J]. Limnol Oceanogr, 2006, 51(1): 12-20. doi: 10.4319/lo.2006.51.1.0012
    [12] ROSTB, RIEBESELL U, BURKHARDT S, et al. Carbon acquisition of bloom-forming marine phytoplankton[J]. Limnol Oceanogr, 2003, 48(1): 55-67. doi: 10.4319/lo.2003.48.1.0055
    [13] GIORDANO M, BEARDALL J, RAVEN J A. CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution[J]. Annu Rev Plant Biol, 2005, 56(1): 99-131. doi: 10.1146/annurev.arplant.56.032604.144052
    [14] YUE F R, GAO G, MA J, et al. Future CO2-induced seawater acidification mediates the physiological performance of a green alga Ulva linza in different photoperiods[J]. PeerJ, 2019, 7(1): 1-19.
    [15] GAO G, QU L M, XU T P, et al. Future CO2-induced ocean acidification enhances resilience of a green tide alga to low-salinity stress[J]. ICES J Mar Sci, 2019(7): 2437-2445.
    [16] BARAKAT K M, EL-SAYED H S, KHAIRY H M, et al. Effects of ocean acidification on the growth and biochemical composition of a green alga (Ulva fasciata) and its associated microbiota to the ocean acidification[J]. Saudi J Biol Sci, 2021, 28(1045): 5106-5114.
    [17] CHEN B B, LIN L D, MA Z L, et al. Carbon and nitrogen accumulation and interspecific competition in two algae species, Pyropia haitanensis and Ulva lactuca, under ocean acidification conditions[J]. Aquacult Int, 2019, 27: 721-733. doi: 10.1007/s10499-019-00360-y
    [18] LI Y H, ZHONG J L, ZHENG M S, et al. Photoperiod mediates the effects of elevated CO2 on the growth and physiological performance in the green tide alga Ulva prolifera[J]. Mar Environ Res, 2018, 141: 24-29. doi: 10.1016/j.marenvres.2018.07.015
    [19] ZUCCHI M R, NECCHIJR O. Effects of temperature, irradiance and photoperiod on growth and pigment content in some freshwater red algae in culture[J]. Phycol Res, 2001, 49(2): 103-114. doi: 10.1111/j.1440-1835.2001.tb00240.x
    [20] GREEN L A, NEEFUS C D. Effects of temperature, light level, and photoperiod on the physiology of Porphyra umbilicalis Kützing from the Northwest Atlantic, a candidate for aquaculture[J]. J Appl Phycol, 2016, 28: 1815-1826. doi: 10.1007/s10811-015-0702-6
    [21] CHU Y, LIU Y, LI J, et al. Effects of elevated pCO2 and nutrient enrichment on the growth, photosynthesis, and biochemical compositions of the brown alga Saccharina japonica (Laminariaceae, Phaeophyta)[J]. Peer J, 2019, 7(4): e8040.
    [22] EILERS P, PEETERS J. A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton[J]. Ecol Model, 1988, 42(3/4): 199-215.
    [23] WELLBURN A R. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution[J]. J Plant Physiol, 1994, 144(3): 307-313. doi: 10.1016/S0176-1617(11)81192-2
    [24] ROST B, RIEBESELL U, BURKHARDT S, et al. Carbon acquisition of bloom-forming marine phytoplankton[J]. Limnol Oceanogr, 2003, 48(1): 55-67. doi: 10.4319/lo.2003.48.1.0055
    [25] KENDIRLIOGLU G, AGIRMAN N, CETIN A K. The effects of photoperiod on the growth, protein amount and pigment content of Chlorella vulgaris[J]. Turk J Sci Technol, 2015, 10(2): 7-10.
    [26] GAO G, CLARE A S, ROSE C, et al. Eutrophication and warming-driven green tides (Ulva rigida) are predicted to increase under future climate change scenarios[J]. Mar Pollut Bull, 2017, 114(1): 439-447. doi: 10.1016/j.marpolbul.2016.10.003
    [27] YOUNG C S, GOBLER C J. Ocean acidification accelerates the growth of two bloom-forming macroalgae[J]. PLOS ONE, 2016, 11(5): e0155152. doi: 10.1371/journal.pone.0155152
    [28] GAO G, LIU Y M, LI X S, et al. An ocean acidification acclimatized green tide alga is robust to changes of seawater carbon chemistry but vulnerable to light stress[J]. PLOS ONE, 2016, 11(12): e0169040. doi: 10.1371/journal.pone.0169040
    [29] GAO G, LIU Y M, LI X S, et al. Expected CO2-induced ocean acidification modulates copper toxicity in the green tide alga Ulva prolifera[J]. Environ Exp Bot, 2016, 135: 63-72.
    [30] GAO K S, XU J T, GAO G, et al. Rising CO2 and increased light exposure synergistically reduce marine primary productivity[J]. Nat Clim Change, 2012, 2(7): 519-523. doi: 10.1038/nclimate1507
    [31] RAVEN J A, JOHN B, PATRICIA S B. The possible evolution and future of CO2-concentrating mechanisms[J]. J Exp Bot, 2017, 68(14): 3701-3716. doi: 10.1093/jxb/erx110
    [32] GAO G, LIU Y, LI X, et al. An ocean acidification acclimatised green tide alga is robust to changes of seawater carbon chemistry but vulnerable to light stress[J]. PLOS ONE, 2016, 11(12): e0169040. doi: 10.1371/journal.pone.0169040
    [33] 高坤山. 海洋酸化正负效应: 藻类的生理学响应[J]. 厦门大学学报(自然科学版), 2011, 50(2): 411-417.
    [34] ZOU D H. Effects of elevated atmospheric CO2 on growth, photosynthesis and nitrogen metabolism in the economic brown seaweed, Hizikia fusiforme (Sargassaceae, Phaedphyta)[J]. Aquaculture, 2005, 250(3/4): 726-735.
    [35] WU Y P, GAO K S, RIEBESELL U. CO2-induced seawater acidification affects physiological performance of the marine diatom Phaeodactylum tricornutum[J]. Biogeosciences, 2010, 7(9): 2915-2923. doi: 10.5194/bg-7-2915-2010
    [36] JIN P, WANG T F, LIU N N, et al. Ocean acidification increases the accumulation of toxic phenolic compounds across trophiclevels[J]. Nat Commun, 2015, 6: 8714. doi: 10.1038/ncomms9714
  • 加载中
图(8) / 表(7)
计量
  • 文章访问数:  214
  • HTML全文浏览量:  41
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-26
  • 修回日期:  2021-12-24
  • 录用日期:  2022-02-05
  • 网络出版日期:  2022-02-21

目录

    /

    返回文章
    返回