Effects of elevated CO2 and photoperiod on growth and physiological performance of seedlings of Ulva prolifera
-
摘要: 浒苔 (Ulva prolifera) 幼苗是绿潮藻天然“种子库”的主要组成部分,在绿潮发生发展过程中发挥重要作用。为揭示浒苔绿潮早期暴发的原因,并为未来浒苔绿潮的预警防控提供基础数据,选取2个CO2浓度 [正常空气的CO2浓度400 μatm (LC) 和加富后的CO2浓度1 000 μatm (HC)] 和3个光周期 [短光照 (LL):10 L∶14 D、正常光照 (ML):12 L∶12 D和长光照 (HL):14 L∶10 D],探索其对浒苔幼苗的生长和光合生理的影响。结果显示,高浓度CO2和长光照显著促进了幼苗生长 (P<0.05);相较ML培养条件下,藻体在HL培养条件下显现出更高的生长速率和较低的呼吸速率;光化学参数受高浓度CO2和光照时间的影响不明显;高浓度CO2和长光照显著降低了叶绿素a、叶绿素b和类胡萝卜素的含量 (P<0.05)。结果表明,CO2和光周期对幼苗的生长及光合生理具有显著影响 (P<0.05),HC、HL促进了幼苗的快速生长,增加了浒苔绿潮暴发的可能性,研究结果为深入了解绿潮藻暴发的原因提供了基础数据。Abstract: Ulva prolifera seedlings, which are the main component of the natural "seed bank" of green tide algae, play an important role in the occurrence and development of green tide. In order to understand the causes of the early outbreak of the green tide of U. prolifera and provide basic data for its early warning and prevention, we studied the growth and physiological responses of seedlings after the seedlings being cultured at two different CO2 levels (LC: 400 μatm; HC: 1 000 μatm) in combination with three different photoperiods (LL: 10 L∶14 D; ML: 12 L∶12 D; HL: 14 L∶10 D). The relative growth rate of seedlings were significantly enhanced by elevated CO2 under three light-dark regimes (P<0.05). The seedlings showed an obvious higher growth rate and a lower dark respiration rate (Rd) by HL treatment than by ML treatment. The impact of elevated CO2 and illumination time on the photochemical performance was not obvious. Elevated CO2 and longer illumination time had negative effects on chlorophyll a (Chl a), chlorophyll b (Chl b) and carotenoids (Car) content. The results suggest that the growth and physiological of seedlings are significantly influenced by elevated CO2 and photoperiod (P<0.05). HC and HL promoted the growth of its seedlings and increased the possibility of outbreak of green tide caused by U. prolifera. This study provides basic data for indepth understanding of the causes of green tide algae outbreak.
-
Key words:
- Ulva prolifera seedlings /
- Elevated CO2 /
- Photoperiod /
- Growth /
- Physiological performance /
- Green tide
-
图 1 不同CO2和光周期水平下浒苔幼苗相对生长速率变化
注:不同小写字母表示在LC条件下不同处理间差异显著(P<0.05),不同大写字母表示在HC条件下不同处理间差异显著(P<0.05);*表示同一光周期下不同CO2水平间差异显著(P<0.05);后图同此。
Figure 1. Relative growth rate of U. prolifera seedlings under different CO2 and photoperiod conditions
Note: Different lowercase letters represent significant difference among different treatments under lower CO2 condition (P<0.05), and different uppercase letters represent significant difference among different treatments under high CO2 condition (P<0.05). Asterisk represent signifi-cant difference between low and high CO2 conditions within a photoperiod treatment (P<0.05). The same case in the following figures.
表 1 不同CO2和光周期水平下海水的碳酸盐系统参数
Table 1. Parameters of seawater carbonate system under different CO2 and photoperiod conditions
组别 Group pH CO2分压
pCO2溶解性无机碳 b(DIC)/
(μmol·kg−1)b(HCO3 −)/
(μmol·kg−1)LCLL 8.22±0.01a 361.92±12.43a 1992.63±20.00a 1801.45±21.33a LCML 8.20±0.02a 387.10±23.49a 2026.25±33.93a 1838.76±36.64a LCHL 8.21±0.02a 374.86±19.66a 2012.20±37.71a 1822.57±36.83a HCLL 7.86±0.02b 908.57±41.54b 2089.37±34.75b 1973.63±33.03b HCML 7.93±0.01c 760.59±32.15c 2082.15±46.47ab 1956.44±44.46b HCHL 7.87±0.03b 893.73±42.53b 2104.42±37.06b 1986.47±32.13b 组别 Group b(CO3 2−)/
(μmol·kg−1)b(CO2)/
(μmol·kg−1)总碱度 b(TA)/
(μmol·kg−1)LCLL 179.24±2.22a 11.94±0.41a 2251.60±16.65a LCML 174.72±3.49a 12.78±0.78a 2276.87±27.12a LCHL 177.26±6.11a 12.37±0.65a 2267.25±38.27a HCLL 85.76±3.50b 29.99±1.37b 2194.97±35.74a HCML 100.61±2.63c 25.10±1.06c 2214.06±46.52a HCHL 88.45±6.54b 29.50±1.40b 2214.06±46.52a 注:不同字母表示不同处理间差异显著 (P<0.05)。表4同此。 Note: Different superscript letters represent significant difference (P<0.05). The same case in Table 4. 表 2 CO2和光周期对浒苔幼苗相对生长速率的双因素方差分析
Table 2. Two-way ANOVA analysis for effect of CO2 and photoperiod on relative growth rate of U. prolifera seedlings
自由度 df F 显著性 Sig. 光周期 Photoperiod 2 400.896 68 <0.001 CO2 1 214.697 48 <0.001 光周期×CO2 Photoperiod×CO2 2 25.877 27 <0.001 误差 Error 12 表 3 CO2和光周期对浒苔幼苗有效光合量子产率的双因素方差分析
Table 3. Two-way ANOVA analysis for effect of CO2 and photoperiod on yield of U. prolifera seedlings
自由度 df F 显著性 Sig. 光周期 Photoperiod 2 64.212 12 <0.001 CO2 1 203.757 58 <0.001 光周期×CO2 Photoperiod×CO2 2 12.757 58 0.001 1 误差 Error 12 表 4 不同CO2和光周期条件下浒苔幼苗的相对电子传递速率 (rETR) 与光强关系的最佳拟合参数
Table 4. Best fitted parameters of relationship between rETR and light intensity of U. prolifera seedlings under different CO2 and photoperiod conditions
LCLL LCML LCHL HCLL HCML HCHL 最大相对电子传递速率 rETRmax 22.59±3.18ab 19.25±2.79a 30.49±5.06b 21.68±1.28a 13.56±3.59a 36.69±3.97b 光能利用效率 α 0.16±0.00a 0.19±0.05ab 0.26±0.03b 0.18±0.05a 0.23±0.07a 0.41±0.05c 饱和光强 Ek 138.81±20.64a 109.04±43.75a 120.90±29.12a 131.90±47.43a 69.36±34.08a 91.41±20.22a 表 5 CO2和光周期对浒苔幼苗快速光响应曲线最佳拟合参数的双因素方差分析
Table 5. Two-way ANOVA analysis for effect of CO2 and photoperiod on best fitted parameters derived from light response curve of U. prolifera seedlings
自由度 df F 显著性 Sig. 最大相对电子传递速率 rETRmax 光周期 Photoperiod 2 19.590 67 0.001 00 CO2 1 9.788 51 0.008 71 光周期×CO2 Photoperiod×CO2 2 3.743 84 0.054 52 误差 Error 12 光能利用效率 α 光周期 Photoperiod 2 9.216 37 0.003 76 CO2 1 5.973 77 0.030 92 光周期×CO2 Photoperiod×CO2 2 5.946 1 0.016 05 误差 Error 12 饱和光强 Ek 光周期 Photoperiod 2 2.799 56 0.100 49 CO2 1 2.477 03 0.141 50 光周期×CO2 Photoperiod×CO2 2 0.361 05 0.704 27 误差 Error 12 表 6 CO2和光周期对浒苔幼苗净光合速率和呼吸速率的双因素方差分析
Table 6. Two-way ANOVA analysis for effect of CO2 and photoperiod on net photosynthetic rate and dark respiration rate of U. prolifera seedlings
自由度 df F 显著性 Sig. 净光合速率 Pn 光周期 Photoperiod 2 68.179 51 <0.001 CO2 1 76.312 00 <0.001 光周期×CO2 Photoperiod×CO2 2 3.605 82 0.059 39 误差 Error 12 呼吸速率 Rd 光周期 Photoperiod 2 32.090 00 <0.001 CO2 1 52.590 09 <0.001 光周期×CO2 Photoperiod×CO2 2 8.720 18 0.004 59 误差 Error 12 表 7 CO2和光周期对浒苔幼苗光合色素 (Chl a, Chl b, Car) 的双因素方差分析
Table 7. Two-way ANOVA analysis for effect of CO2 and photoperiod on Chl a, Chl b and Car of U. prolifera seedlings
自由度 df F 显著性 Sig. 叶绿素 a Chl a 光周期 Photoperiod 2 12.627 45 0.001 12 CO2 1 40.655 96 <0.001 光周期×CO2 Photoperiod×CO2 2 4.440 73 0.036 02 误差 Error 12 叶绿素 b Chl b 光周期 Photoperiod 2 12.135 15 0.001 31 CO2 1 39.309 47 <0.001 光周期×CO2 Photoperiod×CO2 2 4.276 84 0.039 61 误差 Error 12 类胡萝卜素 Car 光周期 Photoperiod 2 9.957 24 0.002 83 CO2 1 15.286 19 0.002 07 光周期×CO2 Photoperiod×CO2 2 2.880 35 0.095 13 误差 Error 12 -
[1] ZHANG C, LU J, WU J, et al. Removal of phenanthrene from coastal waters by green tide algae Ulva prolifera[J]. Sci Total Environ, 2017, 609: 1322-1328. doi: 10.1016/j.scitotenv.2017.07.187 [2] LIN A P, SHEN S D, WANG J W, et al. Reproduction diversity of Enteromorpha prolifera[J]. J Integr Plant Biol, 2008, 50(5): 622-629. doi: 10.1111/j.1744-7909.2008.00647.x [3] GAO S, CHEN X Y, YI Q Q, et al. A strategy for the proliferation of Ulva prolifera, main causative species of green tides, with formation of sporangia by fragmentation[J]. PLOS ONE, 2010, 5(1): e8571. doi: 10.1371/journal.pone.0008571 [4] TAYLOR R, FLETCHER R L, RAVEN J A. Preliminary studies on the growth of selected "green tide" algae in laboratory culture: effects of irradiance, temperature, salinity and nutrients on growth rate[J]. Bot Mar, 2001, 44(4): 327-336. [5] 刘峰, 逄少军, 单体锋, 等. 一种新的海水中石莼属海藻显微阶段个体数定量方法及在黄海绿潮爆发过程中的应用[J]. 科学通报, 2010, 55(6): 468-473. [6] GAO G, BEARDALL J, BAO M L, et al. Ocean acidification and nutrient limitation synergistically reduce growth and photosynthetic performances of a green tide alga Ulva linza[J]. Biogeoences, 2018, 15(11): 3409-3420. [7] GATTUSO J P, MAGNAN A, BILLÉ R, et al. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios[J]. Science, 2015, 349(6243): 45-55. [8] ZEEBE R E, WOLF-GLADROW D. CO2 in seawater: equilibrium, kinetics, isotopes[J]. J Mar Syst, 2002, 36(3): 269-270. [9] CALDEIRA K, WICKETT M E. Oceanography: anthropogenic carbon and ocean pH[J]. Nature, 2003, 425(6956): 365. doi: 10.1038/425365a [10] DRING M J. Photocontrol of development in algae[J]. Annu Rev Plant Biol, 1988, 39(1): 157-174. doi: 10.1146/annurev.pp.39.060188.001105 [11] ROST B, RIEBESELL U, SULTEMEYER D. Carbon acquisition of marine phytoplankton: effect of photoperiod length[J]. Limnol Oceanogr, 2006, 51(1): 12-20. doi: 10.4319/lo.2006.51.1.0012 [12] ROST B, RIEBESELL U, BURKHARDT S, et al. Carbon acquisition of bloom-forming marine phytoplankton[J]. Limnol Oceanogr, 2003, 48(1): 55-67. doi: 10.4319/lo.2003.48.1.0055 [13] GIORDANO M, BEARDALL J, RAVEN J A. CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution[J]. Annu Rev Plant Biol, 2005, 56(1): 99-131. doi: 10.1146/annurev.arplant.56.032604.144052 [14] YUE F R, GAO G, MA J, et al. Future CO2-induced seawater acidification mediates the physiological performance of a green alga Ulva linza in different photoperiods[J]. PeerJ, 2019, 7(1): 1-19. [15] GAO G, QU L M, XU T P, et al. Future CO2-induced ocean acidification enhances resilience of a green tide alga to low-salinity stress[J]. ICES J Mar Sci, 2019(7): 2437-2445. [16] BARAKAT K M, EL-SAYED H S, KHAIRY H M, et al. Effects of ocean acidification on the growth and biochemical composition of a green alga (Ulva fasciata) and its associated microbiota to the ocean acidification[J]. Saudi J Biol Sci, 2021, 28(1045): 5106-5114. [17] CHEN B B, LIN L D, MA Z L, et al. Carbon and nitrogen accumulation and interspecific competition in two algae species, Pyropia haitanensis and Ulva lactuca, under ocean acidification conditions[J]. Aquacult Int, 2019, 27: 721-733. doi: 10.1007/s10499-019-00360-y [18] LI Y H, ZHONG J L, ZHENG M S, et al. Photoperiod mediates the effects of elevated CO2 on the growth and physiological performance in the green tide alga Ulva prolifera[J]. Mar Environ Res, 2018, 141: 24-29. doi: 10.1016/j.marenvres.2018.07.015 [19] ZUCCHI M R, NECCHIJR O. Effects of temperature, irradiance and photoperiod on growth and pigment content in some freshwater red algae in culture[J]. Phycol Res, 2001, 49(2): 103-114. doi: 10.1111/j.1440-1835.2001.tb00240.x [20] GREEN L A, NEEFUS C D. Effects of temperature, light level, and photoperiod on the physiology of Porphyra umbilicalis Kützing from the Northwest Atlantic, a candidate for aquaculture[J]. J Appl Phycol, 2016, 28: 1815-1826. doi: 10.1007/s10811-015-0702-6 [21] CHU Y, LIU Y, LI J, et al. Effects of elevated pCO2 and nutrient enrichment on the growth, photosynthesis, and biochemical compositions of the brown alga Saccharina japonica (Laminariaceae, Phaeophyta)[J]. PeerJ, 2019, 7(4): e8040. [22] EILERS P, PEETERS J. A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton[J]. Ecol Model, 1988, 42(3/4): 199-215. [23] WELLBURN A R. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution[J]. J Plant Physiol, 1994, 144(3): 307-313. doi: 10.1016/S0176-1617(11)81192-2 [24] KHOYI Z, SEYFABADI J, RAMEZANPOUR Z. Effects of light intensity and photoperiod on the growth rate, chlorophyll a and β-carotene of freshwater green micro alga Chlorella vulgaris[J]. Comp Biochem Phys A, 2009, 153(2): S215. [25] KENDIRLIOGLU G, AGIRMAN N, CETIN A K. The effects of photoperiod on the growth, protein amount and pigment content of Chlorella vulgaris[J]. Turk J Sci Technol, 2015, 10(2): 7-10. [26] GAO G, CLARE A S, ROSE C, et al. Eutrophication and warming-driven green tides (Ulva rigida) are predicted to increase under future climate change scenarios[J]. Mar Pollut Bull, 2017, 114(1): 439-447. doi: 10.1016/j.marpolbul.2016.10.003 [27] YOUNG C S, GOBLER C J. Ocean acidification accelerates the growth of two bloom-forming macroalgae[J]. PLOS ONE, 2016, 11(5): e0155152. doi: 10.1371/journal.pone.0155152 [28] 张磊, 李航霄, 吴敏, 等. 不同温度下海水酸化对中肋骨条藻光合生理特性的影响[J]. 江苏海洋大学学报 (自然科学版), 2020, 29(1): 1-7. [29] GAO G, LIU Y M, LI X S, et al. Expected CO2-induced ocean acidification modulates copper toxicity in the green tide alga Ulva prolifera[J]. Environ Exp Bot, 2016, 135: 63-72. [30] GAO K S, XU J T, GAO G, et al. Rising CO2 and increased light exposure synergistically reduce marine primary productivity[J]. Nat Clim Change, 2012, 2(7): 519-523. doi: 10.1038/nclimate1507 [31] RAVEN J A, JOHN B, PATRICIA S B. The possible evolution and future of CO2-concentrating mechanisms[J]. J Exp Bot, 2017, 68(14): 3701-3716. doi: 10.1093/jxb/erx110 [32] GAO G, LIU Y M, LI X S, et al. An ocean acidification acclimatised green tide alga is robust to changes of seawater carbon chemistry but vulnerable to light stress[J]. PLOS ONE, 2016, 11(12): e0169040. doi: 10.1371/journal.pone.0169040 [33] 高坤山. 海洋酸化正负效应: 藻类的生理学响应[J]. 厦门大学学报(自然科学版), 2011, 50(2): 411-417. [34] ZOU D H. Effects of elevated atmospheric CO2 on growth, photosynthesis and nitrogen metabolism in the economic brown seaweed, Hizikia fusiforme (Sargassaceae, Phaedphyta)[J]. Aquaculture, 2005, 250(3/4): 726-735. [35] WU Y P, GAO K S, RIEBESELL U. CO2-induced seawater acidification affects physiological performance of the marine diatom Phaeodactylum tricornutum[J]. Biogeosciences, 2010, 7(9): 2915-2923. doi: 10.5194/bg-7-2915-2010 [36] JIN P, WANG T F, LIU N N, et al. Ocean acidification increases the accumulation of toxic phenolic compounds across trophiclevels[J]. Nat Commun, 2015, 6: 8714. doi: 10.1038/ncomms9714 -