Size selectivity of codend mesh size of trawl for Decapterus maruadsi in northern part of South China Sea
-
摘要: 为确定南海拖网最小网目尺寸标准的适应性,采用套网法在南海北部对网目尺寸分别为30、35、40和45 mm的菱形网目(分别以D30、D35、D40和D45表示)进行了选择性试验。使用Logistic和Richards模型分别拟合了不同网目网囊下蓝圆鲹 (Decapterus maruadsi) 的选择性曲线,并通过比较两种模型的偏差和自由度确定最佳拟合曲线。结果显示,Logistic曲线对D30、D35和D45网囊的拟合效果更好,而Richards曲线对D40网囊的拟合效果更好。D30、D35、D40和D45网囊对蓝圆鲹的50%选择叉长 (50% retention fork length, L0.5) 分别为12.43、12.88、13.60和16.79 cm,选择范围 (Selection range, SR) 分别为8.45、6.75、6.08和2.19 cm。随着网目尺寸的增大,蓝圆鲹的L0.5逐渐增加,而SR逐渐减小。根据蓝圆鲹的L0.5和网目大小关系式计算得出的最小网目尺寸为41.39 mm。为保护蓝圆鲹等中小型经济鱼类,建议将南海拖网菱形网囊最小网目尺寸设定为45 mm。Abstract: To determine the suitability of minimum mesh size standards for trawls in the South China Sea, we conducted selectivity tests in that area by using the covered net method with mesh sizes of 30, 35, 40 and 45 mm (Denoted as D30, D35, D40 and D45, respectively). We used Logistic and Richards models to fit selectivity curves for Decapterus maruadsi by the maximum likelihood method, and determined the best-fitting curves by comparing the model deviations and degrees of freedom of the two models. The results show that the Logistic curve fitted better for D30, D35 and D45 mesh codend, while the Richards curve fit better for D40 mesh codend. The 50% retention fork lengths (L0.5) of D. maruadsi for D30, D35, D40 and D45 were 12.43, 12.88, 13.60 and 16.79 cm, respectively. As the mesh size increased, the L0.5 of D. maruadsi increased but the selection range decreased gradually. The minimum mesh size was 41.39 mm based on the relationship between L0.5 and mesh size of D. maruadsi. Thus, 45.39 mm is suggested as the minimum mesh size for trawl in the South China Sea to protect small and medium-sized economic fish such as D. maruadsi.
-
Key words:
- Decapterus maruadsi /
- Trawl selectivity /
- Minimum mesh size /
- Covered net method /
- South China Sea
-
表 1 试验网囊和套网规格
Table 1. Specification of codend and cover net
网目
Mesh纵向目数
Longitudinal mesh amount长度
Length/m横向目数
Transversal mesh amount周长
Circumference/m有效网次
Effective haul网目尺寸
Mesh size/mm网线结构
Netting structureD30 400 12.0 300 9.0 9 30.05±1.50 12×3×2 D35 345 12.0 260 9.0 9 34.20±0.80 12×3×2 D40 300 12.0 224 9.0 10 39.42±0.99 12×3×2 D45 265 12.0 200 9.0 9 42.66±1.16 12×3×2 套网
Cover net720 14.4 540 10.8 — 20 7×3 表 2 蓝圆鲹的Logistic和Richards曲线的估计参数和假设检验
Table 2. Estimated parameters and test of hypotheses of Logistic and Richards curves for D. maruadsi
参数
ParameterD30 D35 Logistic* Richards Logistic* Richards 选择性参数a −3.23±0.61 −2.47±4.39 −4.19±1.43 −0.55±67.13 选择性参数 b 0.26±0.04 0.24±0.11 0.33±0.08 0.27±0.19 非对称程度的控制参数 δ 0.69±1.60 0.08±5.29 50%选择叉长 L0.5 12.43±0.70 12.37±10.14 12.88±1.18 12.72±2.51 选择范围 SR 8.45±1.18 8.29±14.63 6.75±1.70 6.10±38.27 Akaike信息法则 AIC 65.34 67.31 47.83 51.05 H0: Model fit 模型残差 DR 28.06 42.22 22.21 23.43 自由度 DF 17 16 11 10 P 0.044 0.000 0.023 0.009 H1: δ=1 模型残差 DR 14.16 1.22 自由度 DF 1 1 P 0.000 0.270 参数
ParameterD40 D45 Logistic Richards* Logistic* Richards 选择性参数 a −8.51±2.54 −31.95±29.34 −16.85±1.92 −24.64±8.24 选择性参数 b 0.62±0.16 1.83±1.60 1.00±0.11 1.37±0.41 非对称程度的控制参数 δ 10.10±13.14 2.47±1.55 50%选择叉长 L0.5 13.83±0.66 13.60±29.82 16.79±0.11 16.83±10.83 选择范围 SR 3.57±0.91 6.08±1.88 2.19±0.24 2.44±0.27 Akaike信息法则 AIC 52.26 48.68 31.42 31.96 H0: Model fit 模型残差 DR 34.31 28.73 4.51 3.06 自由度 DF 10 9 15 14 P 0.000 0.001 0.996 0.999 H1: δ=1 模型残差 DR 5.58 1.45 自由度 DF 1 1 P 0.018 0.228 注:*. 本曲线拟合较好。 Note: *. The curve will be applied. -
[1] 陈国宝, 邱永松. 南海北部陆架区蓝圆够的生长死亡及合理利用研究[J]. 台湾海峡, 2003, 22(3): 457-464. [2] 张旭丰, 杨吝, 谭永光, 等. 方目网囊对蓝圆鲹和多齿蛇鲻的选择性比较[J]. 湛江海洋大学学报, 2002, 22(3): 26-32. [3] 农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会. 2020中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2020: 38-46. [4] 杨吝, 张旭丰, 谭永光, 等. 南海区拖网网囊最小网目尺寸选择性研究[J]. 中国水产科学, 2003, 10(4): 325-332. doi: 10.3321/j.issn:1005-8737.2003.04.012 [5] WILEMAN D A, FERRO R S T, FONTEYNE R, et al. Manual of methods of measuring the selectivity of towed fishing gear[R]. Copenhagen: ICES Coop Res Rep, 1996: 1-63. [6] 耿平, 张魁, 陈作志, 等. 北部湾蓝圆鲹生物学特征及开发状态的年际变化[J]. 南方水产科学, 2018, 14(6): 1-9. doi: 10.12131/20180106 [7] 许庆昌, 李显森, 孙珊, 等. 黄海双船变水层疏目拖网网囊网目尺寸选择性研究[J]. 中国海洋大学学报(自然科学版), 2020, 50(5): 53-60. [8] 许庆昌, 李显森, 孙珊, 等. 海州湾双船有翼单囊拖网渔获物组成及选择性分析[J]. 海洋渔业, 2019, 41(6): 676-683. doi: 10.3969/j.issn.1004-2490.2019.06.004 [9] 宋学锋, 陈雪忠, 黄洪亮, 等. 东海区底拖网对小黄鱼的选择性研究[J]. 上海海洋大学学报, 2015, 24(3): 449-456. [10] 杨炳忠, 杨吝, 谭永光, 等. 基于裤式拖网法的虾拖网网囊网目选择性试验与分析[J]. 中国海洋大学学报(自然科学版), 2020, 50(4): 36-44. [11] 杨炳忠, 杨吝, 谭永光, 等. 南海区虾拖网网囊对刀额新对虾的选择性研究[J]. 南方水产科学, 2019, 15(2): 1-11. doi: 10.12131/20180197 [12] 杨炳忠, 杨吝, 谭永光, 等. 南海区桁杆虾拖网方目与菱目混合网囊网目选择性研究[J]. 南方水产科学, 2018, 14(1): 105-113. doi: 10.3969/j.issn.20950780.2018.01.014 [13] 杨炳忠, 杨吝, 谭永光, 等. 南海区桁杆虾拖网40 mm方目分离网片选择性的初步研究[J]. 海洋科学, 2018, 42(2): 64-70. [14] 梅春, 徐宾铎, 薛莹, 等. 胶州湾中部海域秋、冬季鱼类群落结构及其多样性研究[J]. 中国水产科学, 2010, 17(1): 110-118. [15] CHI Y, LIU D, XING W, et al. Island ecosystem health in the context of human activities with different types and intensities[J]. J Clean Prod, 2021, 281: 125334. doi: 10.1016/j.jclepro.2020.125334 [16] 孙满昌. 渔具渔法选择性[M]. 北京: 中国农业出版社, 2004: 709-715. [17] MILLAR R B, FRYER R J. Estimating the size-selection curves of towed gears, traps, nets and hooks[J]. Rev Fish Biol Fisher, 1999, 9(1): 89-116. doi: 10.1023/A:1008838220001 [18] HERRMANN B, SISTIAGA M, RINDAHL L, et al. Estimation of the effect of gear design changes on catch efficiency: methodology and a case study for a Spanish longline fishery targeting hake (Merluccius merluccius)[J]. Fish Res, 2017, 185: 153-160. doi: 10.1016/j.fishres.2016.09.013 [19] KOTWICKI S, LAUTH R R, WILLIAMS K, et al. Selectivity ratio: a useful tool for comparing size selectivity of multiple survey gears[J]. Fish Res, 2017, 191: 76-86. doi: 10.1016/j.fishres.2017.02.012 [20] STEWART J, FERRELL D J. Mesh selectivity in the New South Wales demersal trap fishery[J]. Fish Res, 2003, 59(3): 379-391. doi: 10.1016/S0165-7836(02)00024-3 [21] YANG B, YANG L, TAN Y, et al. Size selectivity of combined square and diamond mesh codends of shrimp beam trawl for banded scad Caranx (Atule) kalla in the northern South China Sea[J]. J Oceanol Limnol, 2018, 36(5): 1880-1890. doi: 10.1007/s00343-018-7070-4 [22] BROADHURST M K, STERLING D J, MILLAR R B. T45 side panels improve penaeid-trawl selection[J]. Fish Res, 2018, 204: 8-15. doi: 10.1016/j.fishres.2018.01.015 [23] MACBETH W G, BROADHURST M K, MILLAR R B. Improving selectivity in an australian penaeid stow-net fishery[J]. B Mar Sci, 2005, 76(3): 647-660. [24] BROADHURST M K, MILLAR R B, WOODEN M E L, et al. Optimising codend configuration in a multispecies demersal trawl fishery[J]. Fish Manag Ecol, 2006, 13(2): 81-92. doi: 10.1111/j.1365-2400.2006.00479.x [25] MADSEN N, HANSEN K, MADSEN N A H. Behavior of different trawl codend concepts[J]. Ocean Eng, 2015, 108: 571-577. doi: 10.1016/j.oceaneng.2015.08.047 [26] BAYSE S M, HERRMANN B, LENOIR H, et al. Could a T90 mesh codend improve selectivity in the Belgian beam trawl fishery?[J]. Fish Res, 2016, 174: 201-209. doi: 10.1016/j.fishres.2015.10.012 [27] CHENG Z, WINGER P D, BAYSE S M, et al. Out with the old and in with the new: T90 codends improve size selectivity in the Canadian redfish (Sebastes mentella) trawl fishery[J]. Can J Fish Aquat Sci, 2020, 3: 1-36. [28] ROBERT M, MORANDEAU F, SCAVINNER M, et al. Toward elimination of unwanted catches using a 100 mm T90 extension and codend in demersal mixed fisheries[J]. PLOS ONE, 2020, 15(7): e235368. [29] 杨吝, 谭永光, 张旭丰. 南海底拖网方、菱目网囊选择性研究[J]. 湛江海洋大学学报, 2002, 22(3): 19-25. -