留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

罗非鱼无乳链球菌ΔessA、ΔessB、ΔessC敲除菌株的构建及其特性分析

马艳平 郝乐 冯国清 梁志凌 马江耀 柯浩 刘振兴

马艳平, 郝乐, 冯国清, 梁志凌, 马江耀, 柯浩, 刘振兴. 罗非鱼无乳链球菌ΔessA、ΔessB、ΔessC敲除菌株的构建及其特性分析[J]. 南方水产科学, 2022, 18(4): 76-86. doi: 10.12131/20210246
引用本文: 马艳平, 郝乐, 冯国清, 梁志凌, 马江耀, 柯浩, 刘振兴. 罗非鱼无乳链球菌ΔessA、ΔessB、ΔessC敲除菌株的构建及其特性分析[J]. 南方水产科学, 2022, 18(4): 76-86. doi: 10.12131/20210246
MA Yanping, HAO Le, FENG Guoqing, LIANG Zhiling, MA Jiangyao, KE Hao, LIU Zhenxing. Construction and characterization research of essA, essB and essC-deleted mutants in Streptococcus agalactiae from tilapia[J]. South China Fisheries Science, 2022, 18(4): 76-86. doi: 10.12131/20210246
Citation: MA Yanping, HAO Le, FENG Guoqing, LIANG Zhiling, MA Jiangyao, KE Hao, LIU Zhenxing. Construction and characterization research of essA, essB and essC-deleted mutants in Streptococcus agalactiae from tilapia[J]. South China Fisheries Science, 2022, 18(4): 76-86. doi: 10.12131/20210246

罗非鱼无乳链球菌ΔessA、ΔessB、ΔessC敲除菌株的构建及其特性分析

doi: 10.12131/20210246
基金项目: 广东省自然科学基金项目 (2021A1515010498);广东省农业科学院水产研究中心课题 (XT202232);佛山市财政专项资金—2021年度共建广东农业科技示范市项目
详细信息
    作者简介:

    马艳平  (1984—),女,副研究员,博士,从事水产病害与防控研究。 E-mail: mayanping@gdaas.cn

    通讯作者:

    刘振兴 (1981—),男,副研究员,博士,从事水产病害与防控研究。 E-mail: liuzhenxing@gdaas.cn

  • 中图分类号: S 943.116.42

Construction and characterization research of essA, essB and essC-deleted mutants in Streptococcus agalactiae from tilapia

  • 摘要: VII型分泌系统存在于无乳链球菌 (Streptococcus agalactiae) 中,其组成膜蛋白对底物蛋白的分泌转运至关重要。为此利用热敏型自杀质粒,构建了含氯霉素筛选标签的膜蛋白重组敲除载体pSET4s-ΔessA、pSET4s-ΔessB、pSET4s-ΔessC,经同源重组后,利用PCR技术筛选到了其缺失突变株-无乳链球菌ΔessA、ΔessB、ΔessC。通过菌株生长曲线分析,ΔessA、ΔessB、ΔessC敲除株均较野生株 (WT) 生长过程变慢,其中ΔessA、ΔessB敲除株在生长早期有显著性差异 (P<0.01)。对ESAT6蛋白分泌影响分析显示,与WT株相比,ΔessA、ΔessB、ΔessC敲除株ESAT6的表达量均显著下调 (P<0.01)。结果显示,ΔessA、ΔessB、ΔessC敲除株均较WT株毒力显著降低 (P<0.01)。研究表明,essA、essB、essC为无乳链球菌VII型分泌系统重要的膜蛋白,其基因缺失造成了分泌蛋白ESAT6 mRNA表达水平下降,影响了菌株毒力。
  • 图  1  essAessBessC同源臂融合PCR结果

    Figure  1.  Overlap extension PCR results of essA, essB, essC homologous arms

    图  2  敲除株ΔessA、ΔessB、ΔessC DNA水平PCR鉴定结果

    Figure  2.  PCR identification results of ΔessA, ΔessB, ΔessC knockout strains at DNA level

    图  3  敲除株ΔessA、ΔessB、ΔessC RNA水平PCR鉴定结果

    Figure  3.  PCR identification of ΔessA, ΔessB and ΔessC knockout strains at RNA level

    图  4  敲除菌株ΔessA、ΔessB、ΔessC 生长曲线测定结果

    Figure  4.  Growth curve of ΔessA, ΔessB and ΔessC knockout strains

    图  5  ESAT6 qPCR检测方法的建立

    注:a. 扩增效率分析结果;b. 熔解曲线分析结果; c. 扩增产物琼脂糖凝胶检测结果。

    Figure  5.  qPCR detection method of ESAT6 gene

    Note: a. Amplification efficiency analysis result; b. Melt curve analysis result; c. Amplification product detection result based on agarose gel.

    图  6  敲除株ΔessA、ΔessB、ΔessC 与野生株对底物蛋白ESAT6表达量的影响结果

    注:**. 差异显著 (P<0.01)。

    Figure  6.  Effect of substrate protein ESAT6 expression by knockout strains ΔessA, ΔessB, ΔessC and WT strain

    Note: **. Significant difference (P<0.01).

    图  7  敲除菌株ΔessA、ΔessB、ΔessC 与野生株毒力试验结果

    Figure  7.  Virulence test of ΔessA, ΔessB, ΔessC knockout strains and WT strain

    图  8  攻毒死亡鱼解剖及其菌株鉴定结果

    注:a. 攻毒死亡鱼解剖症状;b. 攻毒分离菌株革兰氏染色结果;c. 攻毒分离菌株 PCR 鉴定结果。

    Figure  8.  Anatomical symptom result and identification of strains of infected dead tilapia

    Note: a. Anatomical symptom result of infected dead tilapia; b. Gram staining result of isolated strain after infection; c. PCR identification of isolated strain after infection.

    表  1  试验用引物

    Table  1.   Primers in this study

    引物名称 Primer name引物序列 Primer sequence 5'−3'
    重组质粒构建用引物 Primers for recombinant plasmid construction
     essAup-FBamHI5'-GCGGATCCGCCGTAGGCACAGTAGCGACT-3' BamHI
     essAup-R5'-GAGTGAGACTTTAGATTGACGG-3'
     essAdown-F5'-ACGTTGAGCCTCGGAACCCATCGAATTAGAATACACATATTAACATTACT-3'
     essAdown-REcoRI5'-GCGAATTCGATAGAGCGTGCGCTTCTGTCTG-3' EcoRI
     essBup-FBamHI5'-GCGGATCCGGACCAGATTTTTGGCAGTTATC-3' BamHI
     essBup-R5'-CAGCCTGAATAGTTTCTGCATGAT-3'
     essBdown-F5'-GACGTTGAGCCTCGGAACCCATCGAATTATAAAGTTGATTATAATCAAGTGA-3'
     essBdown-REcoRI5'-GCGAATTCAGAAGATGTACTTGTTGTAGTAC-3' EcoRI
     essCup-FSalI5'-GCGTCGACAAACGGCAAGTCGCCAATACCAG-3' SalI
     essCup-R5'-TGCTGACTCCAATCATCACTAG-3'
     essCdown-F5'-GACGTTGAGCCTCGGAACCCATCGAATTACAGGAAATGGCTGATACTTATCAC-3'
     essCdown-REcoRI5'-GCGAATTCTTAACTTTTCATCAGTTACAAT-3' EcoRI
     Cat(essA)-F5'-ATGAAAACCGTCAATCTAAAGTCTCACTCCACCGAACTAGAGCTTGATG-3'
     Cat(essB)-F5'-TATCATGCAGAAACTATTCAGGCTGCACCGAACTAGAGCTTGATGAAAA-3'
     Cat(essC)-F5'-CCTCCTCTAGTGATGATTGGAGTCAGCACACCGAACTAGAGCTTGATGAA-3'
     Cat-R5'-TAATTCGATGGGTTCCGAGGCTC-3'
    基因缺失突变株筛选所用引物 Primers for gene deletion mutant strains screening
     essA验证-F5'-GCCGTAGGCACAGTAGCGACTG-3'
     essA验证-R5'-ACATTCAAGGCTAATCGTAA-3'
     essB验证-F5'-TGGAAACAGATTCGTTTGTA-3'
     essB验证-R5'-TACCTACTTTTAGTTTTAG-3'
     essC验证-F5'-CGTCCTCGTGGTATCTATATC-3'
     essC验证-R5'-CAATATCATCCTGACCACGTAAG-3'
     essA-F5'-ATGAAGTTGAAACGATTTTTAG-3'
     essA-R5'-TTAATATGTGTATTCATCCT-3'
     essB-F5'-TGGAAACAGATTCGTTTGTA-3'
     essB-R5'-TACCTACTTTTAGTTTTAGA-3'
     essC-F5'-TCGTGGTATCTATATCATTGCAAC-3'
     essC-R5'-GATAAACAATATCATCCTGACCAC-3'
    Real-time PCR所用引物 Primers for real-time PCR
     ESAT6-F5'-ATACTGCTGGTTCTCAACAA-3'
     ESAT6-R5'-GTCAATAACTGCTTGCTCTT-3'
     16S-rRNA-F5'-CGACGATACATAGCCGACC-3'
     16S-rRNA-R5'-CCGTCACTTGGTAGATTTTCC-3'
    注:下划线为限制性内切酶位点。 Note: The underlined are restriction endonuclease sites.
    下载: 导出CSV
  • [1] VORNHAGEN J, ADAMS WALDORF K M, RAJAGOPAL L. Perinatal group B streptococcal infections: virulence factors, immunity, and prevention strategies[J]. Trends Microbiol, 2017, 25(11): 919-931. doi: 10.1016/j.tim.2017.05.013
    [2] FURFARO L L, CHANG B J, PAYNE M S. Perinatal Streptococcus agalactiae epidemiology and surveillance targets[J]. Clin Microbiol Rev, 2018, 31(4): e00049-18.
    [3] 张行, 李新圃, 杨峰, 等. 无乳链球菌研究进展[J]. 中国兽医学报, 2020, 40(4): 864-872.
    [4] 苏友禄, 刘婵, 邓益琴, 等. 罗非鱼无乳链球菌病的研究进展[J]. 大连海洋大学学报, 2019, 34(5): 757-766.
    [5] 张德峰, 袁伟, 可小丽, 等. 中国罗非鱼主养区无乳链球菌的分子流行特征及其传播方式[J]. 中国水产科学, 2017, 24(03): 606-614.
    [6] FAMELIS N, RIVERA-CALZADA A, DEGLIESPOSTI G, et al. Architecture of the mycobacterial type VII secretion system[J]. Nature, 2019, 576(7786): 321-325. doi: 10.1038/s41586-019-1633-1
    [7] BOTTAI D, GRÖSCHEL M I, BROSCH R. Type VII secretion systems in Gram-positive bacteria[J]. Curr Top Microbiol, 2017, 404: 235-265.
    [8] LAI L, DAI J, TANG H, et al. Streptococcus suis serotype 9 strain GZ0565 contains a type VII secretion system putative substrate EsxA that contributes to bacterial virulence and a vanZ-like gene that confers resistance to teicoplanin and dalbavancin in Streptococcus agalactiae[J]. Vet Microbiol, 2017, 205: 26-33. doi: 10.1016/j.vetmic.2017.04.030
    [9] TIWARI S, CASEY R, GOULDING C W, et al. Infect and inject: how Mycobacterium tuberculosis exploits its major virulence-associated type VII secretion system, ESX-1[J]. Microbiol Spectr, 2019, 7(3): 10.1128.
    [10] CAO Z, CASABONA M G, KNEUPER H, et al. The type VII secretion system of Staphylococcus aureus secretes a nuclease toxin that targets competitor bacteria[J]. Nature Microbiol, 2016, 2: 16183.
    [11] 张保海, 姚学萍, 王印, 等. 金黄色葡萄球菌VII型分泌系统研究进展[J]. 中国人兽共患病学报, 2019, 35(12): 1134-1138,1143.
    [12] SHUKLA A, PALLEN M, ANTHONY M, et al. The homodimeric GBS1074 from Streptococcus agalactiae[J]. Acta Crystallogr F, 2010, 66(Pt 11): 1421-1425.
    [13] SCHNEEWIND O, MISSIAKAS D M. Protein secretion and surface display in Gram-positive bacteria[J]. Philos T R SOC B, 2012, 367(1592): 1123-1139. doi: 10.1098/rstb.2011.0210
    [14] JÄGER F, ZOLTNER M, KNEUPER H, et al. Membrane interactions and self-association of components of the Ess/Type VII secretion system of Staphylococcus aureus[J]. FEBS Lett, 2016, 590(3): 349-357. doi: 10.1002/1873-3468.12065
    [15] ALY K A, ANDERSON M, OHR R J, et al. Isolation of a membrane protein complex for type VII secretion in Staphylococcus aureus[J]. J Bacteriol, 2017, 199(23): e00482-17.
    [16] CROSSKEY T D, BECKHAM K S H, WILMANNS M. The ATPases of the mycobacterial type VII secretion system: structural and mechanistic insights into secretion[J]. Prog Biophys Mol Biol, 2020, 152: 25-34. doi: 10.1016/j.pbiomolbio.2019.11.008
    [17] WANG S, ZHOU K, YANG X, et al. Structural insights into substrate recognition by the type VII secretion system[J]. Protein Cell, 2020, 11(2): 124-137. doi: 10.1007/s13238-019-00671-z
    [18] POULSEN C, PANJIKAR S, HOLTON S J, et al. WXG 100 protein superfamily consists of three subfamilies and exhibits an α-helical C-terminal conserved residue pattern[J]. PLOS ONE, 2014, 9(2): e89313. doi: 10.1371/journal.pone.0089313
    [19] ANNÉ J, ECONOMOU A, BERNAERTS K. Protein ssecretion in Gram-positive bacteria: from multiple pathways to biotechnology[J]. Curr Top Microbiol, 2017, 404: 267-308.
    [20] DAS C, GHOSH T S, MANDE S S. In silico dissection of Type VII Secretion System components across bacteria: new directions towards functional characterization[J]. J Biosci, 2016, 41(1): 133-143. doi: 10.1007/s12038-016-9599-8
    [21] MA Y P, HAO L, LIANG Z L, et al. Characterization of novel antigenic vaccine candidates for Nile tilapia (Oreochromis niloticus) against Streptococcus agalactiae infection[J]. Fish Shellfish Immun, 2020, 105: 405-414. doi: 10.1016/j.fsi.2020.07.024
    [22] TAKAMATSU D, OSAKI M, SEKIZAKI T. Thermosensitive suicide vectors for gene replacement in Streptococcus suis[J]. Plasmid, 2001, 46(2): 140-148. doi: 10.1006/plas.2001.1532
    [23] MA Y, HAO L, KE H, et al. LuxS/AI-2 in Streptococcus agalactiae reveals a key role in acid tolerance and virulence[J]. Res Vet Sci, 2017, 115: 501-507. doi: 10.1016/j.rvsc.2017.07.032
    [24] SUTCLIFFE I C. New insights into the distribution of WXG100 protein secretion systems[J]. Antonie van Leeuwenhoek, 2011, 99(2): 127-131. doi: 10.1007/s10482-010-9507-4
    [25] YANG S, LI F, JIA S, et al. Early secreted antigen ESAT6 of Mycobacterium Tuberculosis promotes apoptosis of macrophages via targeting the microRNA155-SOCS1 interaction[J]. Cell Physiol Biochem, 2015, 35(4): 1276-1288. doi: 10.1159/000373950
    [26] MA Y P, KE H, LIANG Z L, et al. Protective efficacy of cationic-PLGA microspheres loaded with DNA vaccine encoding the sip gene of Streptococcus agalactiae in tilapia[J]. Fish Shellfish Immunol, 2017, 66: 345-353. doi: 10.1016/j.fsi.2017.05.003
    [27] BURTS M L, WILLIAMS W A, DEBORD K, et al. EsxA and EsxB are secreted by an ESAT-6-like system that is required for the pathogenesis of Staphylococcus aureus infections[J]. P Natl Acad Sci USA, 2005, 102(4): 1169-1174. doi: 10.1073/pnas.0405620102
    [28] CHEN Y H, ANDERSON M, HENDRICKX A P, et al. Characterization of EssB, a protein required for secretion of ESAT-6 like proteins in Staphylococcus aureus[J]. BMC Microbiol, 2012, 12: 219. doi: 10.1186/1471-2180-12-219
    [29] WARNE B, HARKINS C P, HARRIS S R, et al. The Ess/Type VII secretion system of Staphylococcus aureus shows unexpected genetic diversity[J]. BMC Genomics, 2016, 17(3): 222.
    [30] PINHEIRO J, REIS O, VIEIRA A, et al. Listeria monocytogenes encodes a functional ESX-1 secretion system whose expression is detrimental to in vivo infection[J]. Virulence, 2017, 8(6): 993-1004. doi: 10.1080/21505594.2016.1244589
    [31] BECKHAM K S, CICCARELLI L, BUNDUC C M, et al. Structure of the mycobacterial ESX-5 type VII secretion system membrane complex by single-particle analysis[J]. Nat Microbiol, 2017, 2: 17047. doi: 10.1038/nmicrobiol.2017.47
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  421
  • HTML全文浏览量:  132
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-26
  • 修回日期:  2021-12-14
  • 录用日期:  2021-12-21
  • 网络出版日期:  2022-02-07
  • 刊出日期:  2022-08-05

目录

    /

    返回文章
    返回