Construction and characterization research of essA, essB and essC-deleted mutants in Streptococcus agalactiae from tilapia
-
摘要: VII型分泌系统存在于无乳链球菌 (Streptococcus agalactiae) 中,其组成膜蛋白对底物蛋白的分泌转运至关重要。为此利用热敏型自杀质粒,构建了含氯霉素筛选标签的膜蛋白重组敲除载体pSET4s-ΔessA、pSET4s-ΔessB、pSET4s-ΔessC,经同源重组后,利用PCR技术筛选到了其缺失突变株-无乳链球菌ΔessA、ΔessB、ΔessC。通过菌株生长曲线分析,ΔessA、ΔessB、ΔessC敲除株均较野生株 (WT) 生长过程变慢,其中ΔessA、ΔessB敲除株在生长早期有显著性差异 (P<0.01)。对ESAT6蛋白分泌影响分析显示,与WT株相比,ΔessA、ΔessB、ΔessC敲除株ESAT6的表达量均显著下调 (P<0.01)。结果显示,ΔessA、ΔessB、ΔessC敲除株均较WT株毒力显著降低 (P<0.01)。研究表明,essA、essB、essC为无乳链球菌VII型分泌系统重要的膜蛋白,其基因缺失造成了分泌蛋白ESAT6 mRNA表达水平下降,影响了菌株毒力。
-
关键词:
- 罗非鱼 /
- 无乳链球菌 /
- VII型分泌系统膜蛋白 /
- 敲除菌株构建 /
- 生物学特性分析
Abstract: The membrane proteins are critical to substrate protein secretion in VII secretion system existing in Streptococcus agalactiae. In this study, we constructed the membrane proteins knockout vectors with chloramphenicol tag including pSET4s-ΔessA, pSET4s-ΔessB and pSET4s-ΔessC, and after the homologous recombination, we screened the mutant S. agalactiae ΔessA, ΔessB and ΔessC via PCR assays. Based on the growth curve analysis, S. agalactiae ΔessA, ΔessB and ΔessC strains showed significantly slower growth process than the wild type strain (WT). ΔessA and ΔessB strains had significant difference in early stage of growth compared with WT strain (P<0.01). According to the secretion product analysis of ESAT6 protein, S. agalactiae ΔessA, ΔessB and ΔessC strains showed significantly lower ESAT6 product than WT (P<0.01). According to challenge test analysis, the deletion of essA, essB or essC gene significantly reduced virulence of S. agalactiae ΔessA, ΔessB and ΔessC compared with WT (P<0.01). The results suggest that essA, essB and essC proteins are important component membrane proteins of VII secretion system in S. agalactiae, and these genes deletions cause ESAT6 mRNA expression and virulence decline. -
图 8 攻毒死亡鱼解剖及其菌株鉴定结果
注:a. 攻毒死亡鱼解剖症状;b. 攻毒分离菌株革兰氏染色结果;c. 攻毒分离菌株 PCR 鉴定结果。
Figure 8. Anatomical symptom result and identification of strains of infected dead tilapia
Note: a. Anatomical symptom result of infected dead tilapia; b. Gram staining result of isolated strain after infection; c. PCR identification of isolated strain after infection.
表 1 试验用引物
Table 1. Primers in this study
引物名称 Primer name 引物序列 Primer sequence 5'−3' 重组质粒构建用引物 Primers for recombinant plasmid construction essAup-FBamHI 5'-GCGGATCCGCCGTAGGCACAGTAGCGACT-3' BamHI essAup-R 5'-GAGTGAGACTTTAGATTGACGG-3' essAdown-F 5'-ACGTTGAGCCTCGGAACCCATCGAATTAGAATACACATATTAACATTACT-3' essAdown-REcoRI 5'-GCGAATTCGATAGAGCGTGCGCTTCTGTCTG-3' EcoRI essBup-FBamHI 5'-GCGGATCCGGACCAGATTTTTGGCAGTTATC-3' BamHI essBup-R 5'-CAGCCTGAATAGTTTCTGCATGAT-3' essBdown-F 5'-GACGTTGAGCCTCGGAACCCATCGAATTATAAAGTTGATTATAATCAAGTGA-3' essBdown-REcoRI 5'-GCGAATTCAGAAGATGTACTTGTTGTAGTAC-3' EcoRI essCup-FSalI 5'-GCGTCGACAAACGGCAAGTCGCCAATACCAG-3' SalI essCup-R 5'-TGCTGACTCCAATCATCACTAG-3' essCdown-F 5'-GACGTTGAGCCTCGGAACCCATCGAATTACAGGAAATGGCTGATACTTATCAC-3' essCdown-REcoRI 5'-GCGAATTCTTAACTTTTCATCAGTTACAAT-3' EcoRI Cat(essA)-F 5'-ATGAAAACCGTCAATCTAAAGTCTCACTCCACCGAACTAGAGCTTGATG-3' Cat(essB)-F 5'-TATCATGCAGAAACTATTCAGGCTGCACCGAACTAGAGCTTGATGAAAA-3' Cat(essC)-F 5'-CCTCCTCTAGTGATGATTGGAGTCAGCACACCGAACTAGAGCTTGATGAA-3' Cat-R 5'-TAATTCGATGGGTTCCGAGGCTC-3' 基因缺失突变株筛选所用引物 Primers for gene deletion mutant strains screening essA验证-F 5'-GCCGTAGGCACAGTAGCGACTG-3' essA验证-R 5'-ACATTCAAGGCTAATCGTAA-3' essB验证-F 5'-TGGAAACAGATTCGTTTGTA-3' essB验证-R 5'-TACCTACTTTTAGTTTTAG-3' essC验证-F 5'-CGTCCTCGTGGTATCTATATC-3' essC验证-R 5'-CAATATCATCCTGACCACGTAAG-3' essA-F 5'-ATGAAGTTGAAACGATTTTTAG-3' essA-R 5'-TTAATATGTGTATTCATCCT-3' essB-F 5'-TGGAAACAGATTCGTTTGTA-3' essB-R 5'-TACCTACTTTTAGTTTTAGA-3' essC-F 5'-TCGTGGTATCTATATCATTGCAAC-3' essC-R 5'-GATAAACAATATCATCCTGACCAC-3' Real-time PCR所用引物 Primers for real-time PCR ESAT6-F 5'-ATACTGCTGGTTCTCAACAA-3' ESAT6-R 5'-GTCAATAACTGCTTGCTCTT-3' 16S-rRNA-F 5'-CGACGATACATAGCCGACC-3' 16S-rRNA-R 5'-CCGTCACTTGGTAGATTTTCC-3' 注:下划线为限制性内切酶位点。 Note: The underlined are restriction endonuclease sites. -
[1] VORNHAGEN J, ADAMS WALDORF K M, RAJAGOPAL L. Perinatal group B streptococcal infections: virulence factors, immunity, and prevention strategies[J]. Trends Microbiol, 2017, 25(11): 919-931. doi: 10.1016/j.tim.2017.05.013 [2] FURFARO L L, CHANG B J, PAYNE M S. Perinatal Streptococcus agalactiae epidemiology and surveillance targets[J]. Clin Microbiol Rev, 2018, 31(4): e00049-18. [3] 张行, 李新圃, 杨峰, 等. 无乳链球菌研究进展[J]. 中国兽医学报, 2020, 40(4): 864-872. [4] 苏友禄, 刘婵, 邓益琴, 等. 罗非鱼无乳链球菌病的研究进展[J]. 大连海洋大学学报, 2019, 34(5): 757-766. [5] 张德峰, 袁伟, 可小丽, 等. 中国罗非鱼主养区无乳链球菌的分子流行特征及其传播方式[J]. 中国水产科学, 2017, 24(03): 606-614. [6] FAMELIS N, RIVERA-CALZADA A, DEGLIESPOSTI G, et al. Architecture of the mycobacterial type VII secretion system[J]. Nature, 2019, 576(7786): 321-325. doi: 10.1038/s41586-019-1633-1 [7] BOTTAI D, GRÖSCHEL M I, BROSCH R. Type VII secretion systems in Gram-positive bacteria[J]. Curr Top Microbiol, 2017, 404: 235-265. [8] LAI L, DAI J, TANG H, et al. Streptococcus suis serotype 9 strain GZ0565 contains a type VII secretion system putative substrate EsxA that contributes to bacterial virulence and a vanZ-like gene that confers resistance to teicoplanin and dalbavancin in Streptococcus agalactiae[J]. Vet Microbiol, 2017, 205: 26-33. doi: 10.1016/j.vetmic.2017.04.030 [9] TIWARI S, CASEY R, GOULDING C W, et al. Infect and inject: how Mycobacterium tuberculosis exploits its major virulence-associated type VII secretion system, ESX-1[J]. Microbiol Spectr, 2019, 7(3): 10.1128. [10] CAO Z, CASABONA M G, KNEUPER H, et al. The type VII secretion system of Staphylococcus aureus secretes a nuclease toxin that targets competitor bacteria[J]. Nature Microbiol, 2016, 2: 16183. [11] 张保海, 姚学萍, 王印, 等. 金黄色葡萄球菌VII型分泌系统研究进展[J]. 中国人兽共患病学报, 2019, 35(12): 1134-1138,1143. [12] SHUKLA A, PALLEN M, ANTHONY M, et al. The homodimeric GBS1074 from Streptococcus agalactiae[J]. Acta Crystallogr F, 2010, 66(Pt 11): 1421-1425. [13] SCHNEEWIND O, MISSIAKAS D M. Protein secretion and surface display in Gram-positive bacteria[J]. Philos T R SOC B, 2012, 367(1592): 1123-1139. doi: 10.1098/rstb.2011.0210 [14] JÄGER F, ZOLTNER M, KNEUPER H, et al. Membrane interactions and self-association of components of the Ess/Type VII secretion system of Staphylococcus aureus[J]. FEBS Lett, 2016, 590(3): 349-357. doi: 10.1002/1873-3468.12065 [15] ALY K A, ANDERSON M, OHR R J, et al. Isolation of a membrane protein complex for type VII secretion in Staphylococcus aureus[J]. J Bacteriol, 2017, 199(23): e00482-17. [16] CROSSKEY T D, BECKHAM K S H, WILMANNS M. The ATPases of the mycobacterial type VII secretion system: structural and mechanistic insights into secretion[J]. Prog Biophys Mol Biol, 2020, 152: 25-34. doi: 10.1016/j.pbiomolbio.2019.11.008 [17] WANG S, ZHOU K, YANG X, et al. Structural insights into substrate recognition by the type VII secretion system[J]. Protein Cell, 2020, 11(2): 124-137. doi: 10.1007/s13238-019-00671-z [18] POULSEN C, PANJIKAR S, HOLTON S J, et al. WXG 100 protein superfamily consists of three subfamilies and exhibits an α-helical C-terminal conserved residue pattern[J]. PLOS ONE, 2014, 9(2): e89313. doi: 10.1371/journal.pone.0089313 [19] ANNÉ J, ECONOMOU A, BERNAERTS K. Protein ssecretion in Gram-positive bacteria: from multiple pathways to biotechnology[J]. Curr Top Microbiol, 2017, 404: 267-308. [20] DAS C, GHOSH T S, MANDE S S. In silico dissection of Type VII Secretion System components across bacteria: new directions towards functional characterization[J]. J Biosci, 2016, 41(1): 133-143. doi: 10.1007/s12038-016-9599-8 [21] MA Y P, HAO L, LIANG Z L, et al. Characterization of novel antigenic vaccine candidates for Nile tilapia (Oreochromis niloticus) against Streptococcus agalactiae infection[J]. Fish Shellfish Immun, 2020, 105: 405-414. doi: 10.1016/j.fsi.2020.07.024 [22] TAKAMATSU D, OSAKI M, SEKIZAKI T. Thermosensitive suicide vectors for gene replacement in Streptococcus suis[J]. Plasmid, 2001, 46(2): 140-148. doi: 10.1006/plas.2001.1532 [23] MA Y, HAO L, KE H, et al. LuxS/AI-2 in Streptococcus agalactiae reveals a key role in acid tolerance and virulence[J]. Res Vet Sci, 2017, 115: 501-507. doi: 10.1016/j.rvsc.2017.07.032 [24] SUTCLIFFE I C. New insights into the distribution of WXG100 protein secretion systems[J]. Antonie van Leeuwenhoek, 2011, 99(2): 127-131. doi: 10.1007/s10482-010-9507-4 [25] YANG S, LI F, JIA S, et al. Early secreted antigen ESAT6 of Mycobacterium Tuberculosis promotes apoptosis of macrophages via targeting the microRNA155-SOCS1 interaction[J]. Cell Physiol Biochem, 2015, 35(4): 1276-1288. doi: 10.1159/000373950 [26] MA Y P, KE H, LIANG Z L, et al. Protective efficacy of cationic-PLGA microspheres loaded with DNA vaccine encoding the sip gene of Streptococcus agalactiae in tilapia[J]. Fish Shellfish Immunol, 2017, 66: 345-353. doi: 10.1016/j.fsi.2017.05.003 [27] BURTS M L, WILLIAMS W A, DEBORD K, et al. EsxA and EsxB are secreted by an ESAT-6-like system that is required for the pathogenesis of Staphylococcus aureus infections[J]. P Natl Acad Sci USA, 2005, 102(4): 1169-1174. doi: 10.1073/pnas.0405620102 [28] CHEN Y H, ANDERSON M, HENDRICKX A P, et al. Characterization of EssB, a protein required for secretion of ESAT-6 like proteins in Staphylococcus aureus[J]. BMC Microbiol, 2012, 12: 219. doi: 10.1186/1471-2180-12-219 [29] WARNE B, HARKINS C P, HARRIS S R, et al. The Ess/Type VII secretion system of Staphylococcus aureus shows unexpected genetic diversity[J]. BMC Genomics, 2016, 17(3): 222. [30] PINHEIRO J, REIS O, VIEIRA A, et al. Listeria monocytogenes encodes a functional ESX-1 secretion system whose expression is detrimental to in vivo infection[J]. Virulence, 2017, 8(6): 993-1004. doi: 10.1080/21505594.2016.1244589 [31] BECKHAM K S, CICCARELLI L, BUNDUC C M, et al. Structure of the mycobacterial ESX-5 type VII secretion system membrane complex by single-particle analysis[J]. Nat Microbiol, 2017, 2: 17047. doi: 10.1038/nmicrobiol.2017.47 -