Relative energy accumulation in soma and gonad tissues of female Dosidicus gigas and relation to environmental effects
-
摘要: 为了从能量积累角度掌握茎柔鱼 (Dosidicus gigas) 的生活史策略,利用组织能量密度测定技术和广义线性混合效应模型 (Generalized linear mixed-effects models, GLMM) 对东太平洋茎柔鱼的肌肉、性腺等组织的相对能量积累及其与栖息海域环境因子之间的关系进行了分析。结果显示,东太平洋茎柔鱼以肌肉组织能量积累为主 (相对能量积累占70%以上),性腺组织能量积累相对较低。在生理性发育期至功能性成熟期,肌肉组织相对能量积累下降显著,性腺组织相对能量积累明显;在功能性成熟期,肌肉组织相对能量积累回升显著。肌肉组织和性腺组织的相对能量积累与栖息海域海表温度无显著相关性,但与栖息海域叶绿素 a 质量浓度存在显著的效应关系,并与采样经度分布密切相关。研究表明,东太平洋茎柔鱼在性腺发育开始后能量积累逐渐增加对生殖发育的投入分配,但在繁殖产卵期保持较好的肌肉组织状态,肌肉、性腺组织的相对能量积累更多取决于栖息海域的初级生产力。Abstract: In order to understand the life history strategy of Dosidicus gigas in terms of energy accumulation, we applied the methodology tissue energy density technique and generalized linear mixed-effects models (GLMM) to investigate the relative energy accumulation in soma and gonad tissues. The specimens of D. gigas were collected from the commercial jigging fisheries during 2017 and 2019. The results show that soma tissue was the largest organ for energy accumulation, accounting for at least 70% of the total energy of D. gigas, while gonad tissues accumulated a small portion of energy. The relative energy accumulation in soma tissue declined significantly from physiologically maturing stage to functionally mature stage, followed by a significant rebound at the spawning stage. In contrast, the relative energy accumulation in gonad tissues showed an increasing trend after the onset of physiologically maturing, reaching a peak at the stage of functionally mature. The relative energy accumulation in soma was not significantly correlated with sea surface temperature, neither was the relative energy accumulation in gonad tissues. However, there was significant relationship between the relative energy accumulation in both soma and gonad tissues and sea surface chlorophyll-a concentration. There was also significant relationship between the relative energy accumulation in soma and gonad tissues and sampling longitudes in the East Pacific Ocean. These observations indicate that D. gigas increases energy allocation to gonadal development after the onset of physiologically maturing, and maintains somatic condition during the spawning period. The relative energy accumulation in soma and gonad tissues may be more likely related to marine production, due to larger relative energy accumulation associated with higher chlorophyll-a concentration.
-
表 1 茎柔鱼雌性实验样本的生物学数据
Table 1. Biological information of female D. gigas samples for experiment
性腺成熟度
Maturity stage样本 Sample 胴长 Mantle length/mm 体质量 Body mass/g 数目
Number占比
Proportion/%范围
Range均值±标准差
$ \overline { X}\pm { \rm {SD}}$范围
Range均值±标准差
$ \overline { X}\pm { \rm {SD}}$Ⅲ 38 33.93 171~440 287.48±60.67 175~2 114 799.25±518.85 Ⅳ 21 18.75 205~581 362.32±107.33 230~4 529 1 601.52±1 364.71 Ⅴ 9 8.04 222~567 360.67±134.63 310~5 349 2 002.63±1 869.69 Ⅵ 38 33.93 210~641 501.86±119.73 205~7 293 3 598.87±1 636.30 Ⅶ 5 4.46 160~507 366.25±146.64 1 250~4 039 2 478.20±1 261.12 总计 Total 112 100 160~641 367.72.±128.75 175~7 293 2 184.49±2 247.48 表 2 茎柔鱼肌肉组织相对能量积累与环境因子、经度的广义线性混合效应模型结果
Table 2. Results of generalized linear mixed-effects model of soma relative energy accumulation performed on environmental factor and longitude for D. gigas
效应
Effect模型参数因子
Model parameter估计
Estimated效应方差
Variance标准偏差
Std. Dev.t P 随机效应
Random effect采样月份∶采样年份
Sampling month: Sampling year— 0.03 0.18 — — 采样年份 Sampling year — 3.88×10−3 0.06 — — 残差 Residual — 0.08 0.28 — — 固定效应
Fixed effect截距 Intercept 7.20 — 2.07 10.95 1.75×10−6 海表温度 SST −0.09 — 0.19 −1.61 0.13 叶绿素 Chl-a 2.90 — 3.52 3.85 9.48×10−4 经度 Lon −0.04 — 0.06 −2.74 0.01 表 3 茎柔鱼性腺组织相对能量积累与环境因子、经度的广义线性混合效应模型结果
Table 3. Results of generalized linear mixed-effects model of gonad tissues relative energy accumulation performed on environmental factor and longitude for D. gigas
效应
Effect模型参数因子
Model parameter估计
Estimated效应方差
Variance标准偏差
Std. Dev.t P 随机效应
Random effect采样月份:采样年份
Sampling month:Sampling year— 0.03 0.18 — — 采样年份 Sampling year — 3.88×10−3 0.06 — — 残差 Residual — 0.08 0.28 — — 固定效应
Fixed effect截距 Intercept 7.20 — 2.07 10.95 1.75×10−6 海表温度 SST −0.09 — 0.19 −1.61 0.13 叶绿素 Chla 2.90 — 3.52 3.85 9.48×10−4 经度 Lon −0.04 — 0.06 −2.74 0.01 表 4 茎柔鱼卵巢组织相对能量积累与环境因子、经度的广义线性混合效应模型结果
Table 4. Results of generalized linear mixed-effects model of ovary relative energy accumulation performed on environmental factor and longitude for D. gigas
效应
Effect模型参数因子
Model parameter估计
Estimated效应方差
Variance标准偏差
Std.Dev.t P 随机效应
Random effect采样月份:采样年份
Sampling month:Sampling year— 0.13 0.35 — — 采样年份 Sampling year — 0.00 0.00 — — 残差 Residual — 0.28 0.53 — — 固定效应
Fixed effect截距 Intercept 4.95 — 3.91 4.00 3.13×10−3 海表温度 SST 0.16 — 0.40 1.61 0.13 叶绿素 Chl-a −4.84 — 6.54 −3.40 2.82×10−3 经度 Lon 0.06 — 0.12 2.41 0.03 表 5 茎柔鱼输卵管、缠卵腺组织相对能量积累与环境因子的广义线性混合效应模型的固定效应结果
Table 5. Results of generalized linear mixed-effects models fixed effects of relative energy accumulation in oviducts and nidamental glands performed on environmental factor for D. gigas
组织
Tissue参数
Variable估计
Estimated标准误差
Std. Errort P 输卵管
Oviduct截距 Intercept 2.51 3.26 1.65 0.18 海表温度 SST −0.05 0.08 −1.09 0.39 叶绿素 Chla 1.88 12.89 0.55 0.59 缠卵腺
Nidamental gland截距 Intercept 4.43 3.76 3.21 0.02 海表温度 SST −0.09 0.12 −1.92 0.11 叶绿素 Chla −3.17 6.24 −1.85 0.09 -
[1] VILLEGAS-RÍOS D, ALONSO-FERNÁNDEZ A, DOMÍNGUEZ-PETIT R, et al. Energy allocation and reproductive investment in a temperate protogynous hermaphrodite, the ballan wrasse Labrus bergylta[J]. J Sea Res, 2014, 86: 76-85. doi: 10.1016/j.seares.2013.11.010 [2] GRANDE M, MURUA H, ZUDAIRE I, et al. Energy allocation strategy of skipjack tuna Katsuwonus pelamis during their reproductive cycle[J]. J Fish Biol, 2016, 89(5): 2434-2448. doi: 10.1111/jfb.13125 [3] LIN D, CHEN X, WEI Y, et al. The energy accumulation of somatic tissue and reproductive organs in post-recruit female Illex argentinus and the relationship with sea surface oceanography[J]. Fish Res, 2017, 185: 102-114. doi: 10.1016/j.fishres.2016.09.023 [4] BOYLE P, RODHOUSE P. Cephalopods: ecology and fisheries[M]. Oxford, UK: Wiley-Blackwell, 2005: 80-145. [5] JEREB P, ROPER C F E. Cephalopods of the world. An annotated and illustrated catalogue of cephalopod species known to date. Volume 2. Myopsid and Oegopsid Squids[M]. Rome: FAO, 2010: 1-34. [6] 韩飞, 陈新军, 林东明. 东太平洋赤道海域茎柔鱼组织能量积累及其与海表面环境因子的关系[J]. 中国水产科学, 2020, 27(4): 427-437. [7] BOAVIDA-PORTUGAL J, MORENO A, GORDO L, et al. Environmentally adjusted reproductive strategies in females of the commercially exploited common squid Loligo vulgaris[J]. Fish Res, 2010, 106(2): 193-198. doi: 10.1016/j.fishres.2010.06.002 [8] 陈新军, 刘必林, 方舟, 等. 头足纲[M]. 北京: 海洋出版社, 2019: 744. [9] ROSA R, YAMASHIRO C, MARKAIDA U, et al. Dosidicus gigas, humboldt squid[M]//Advances in squid biology, ecology and fisheries Part II: Oegopsid squids. New York: Nova Science Publishers, 2013: 169-206. [10] FAO. FAO Yearbook: fishery and aquaculture statistics 2018/FAO annuaire [M]. Rome: FAO, 2020: 1-110. [11] 魏嫣然, 陈新军, 林东明, 等. 秘鲁外海茎柔鱼肌肉组织的能量积累[J]. 中国水产科学, 2018, 25(2): 444-454. [12] NIGMATULLIN C M, MARKAIDA U. Oocyte development, fecundity and spawning strategy of large sized jumbo squid Dosidicus gigas (Oegopsida: Ommastrephinae)[J]. J Mar Biol Assoc UK, 2009, 89(4): 789-801. doi: 10.1017/S0025315408002853 [13] HERNÁNDEZ-MUÑOZ A T, RODRÍGUEZ-JARAMILLO C, MEJÍA-REBOLLO A, et al. Reproductive strategy in jumbo squid Dosidicus gigas (D'Orbigny, 1835): a new perspective[J]. Fish Res, 2016, 173(2): 145-150. [14] CHEN X, HAN F, ZHU K, et al. The breeding strategy of female jumbo squid Dosidicus gigas: energy acquisition and allocation[J]. Sci Rep, 2020, 10(1): 9639. doi: 10.1038/s41598-020-66703-5 [15] ICES. Report of the Workshop on Sexual Maturity Staging of Cephalopods, 8-11 November 2010[R]. Livorno: ICES, 2010: 14-17. [16] LOUBERE P. Marine control of biological production in the eastern equatorial Pacific Ocean[J]. Nature, 2000, 406(6795): 497-500. doi: 10.1038/35020041 [17] KESSLER W S. The circulation of the eastern tropical Pacific: a review[J]. Prog Oceanogr, 2006, 69(2): 181-217. [18] LI X, YANG Y, LI R, et al. Structure and dynamics of the Pacific North Equatorial Subsurface Current[J]. Sci Rep, 2020, 10(1): 11758. doi: 10.1038/s41598-020-68605-y [19] QUISPE-MACHACA M, GUZMÁN-RIVAS F A, IBÁÑEZ C M, et al. Intra-individual variability in biochemical constituents and fatty acid composition of adult jumbo squid (Dosidicus gigas) in the southeastern Pacific Ocean[J]. J Sea Res, 2021, 174: 102082. doi: 10.1016/j.seares.2021.102082 [20] ZUUR A, IENO E N, WALKER N, et al. Mixed effects models and extensions in ecology with R[M]. New York: Springer-Verlag, 2009: 321-574. [21] BATES D, MAECHLER M, BOLKER B, et al. Fitting linear mixed-effects models using Ime4[J]. J Statistical Software, 2015, 67(1): 1-48. [22] 林东明, 陈新军, 魏嫣然, 等. 阿根廷滑柔鱼雌性个体肌肉和性腺组织能量积累及其生殖投入[J]. 水产学报, 2017, 41(1): 70-80. [23] 韩飞, 陈新军, 林东明, 等. 东太平洋赤道海域茎柔鱼体征生长及生殖投入[J]. 水产学报, 2019, 43(12): 2511-2522. [24] 朱凯, 张立川, 陈新军, 等. 南海鸢乌贼中型群雄性个体肌肉和性腺组织能量积累及其分配[J]. 热带海洋学报, 2019, 38(4): 41-51. [25] MOLTSCHANIWSKYJ N A, CARTER C G. The adaptive response of protein turnover to the energetic demands of reproduction in a cephalopod[J]. Physiol Biochem Zool, 2013, 86(1): 119-126. doi: 10.1086/667799 [26] MCGRATH B, JACKSON G. Egg production in the arrow squid Nototodarus gouldi (Cephalopoda: Ommastrephidae), fast and furious or slow and steady?[J]. Mar Biol, 2002, 141(4): 699-706. doi: 10.1007/s00227-002-0864-z [27] 朱凯, 姚吉祥, 陈新军, 等. 南海鸢乌贼微型群肌肉和性腺组织能量积累及其分配[J]. 上海海洋大学学报, 2020, 29(6): 910-920. doi: 10.12024/jsou.20190902792 [28] JACKSON G D, SEMMENS J M, PHILLIPS K L, et al. Reproduction in the deepwater squid Moroteuthis ingens, what does it cost?[J]. Mar Biol, 2004, 145(5): 905-916. doi: 10.1007/s00227-004-1375-x [29] LAPTIKHOVSKY V V, ARKHIPKIN A I, HOVING H J T. Reproductive biology in two species of deep-sea squids[J]. Mar Biol, 2007, 152(4): 981-990. doi: 10.1007/s00227-007-0749-2 [30] LIN D, HAN F, XUAN S, et al. Fatty acid composition and the evidence for mixed income-capital breeding in female Argentinean short-fin squid Illex argentinus[J]. Mar Biol, 2019, 166(7): 90. doi: 10.1007/s00227-019-3534-0 [31] ENGLISH S, BONSALL M B. Physiological dynamics, reproduction-maintenance allocations, and life history evolution[J]. Ecol Evol, 2019, 9(16): 9312-9323. doi: 10.1002/ece3.5477 [32] FIELD J C, ELLIGER C, BALTZ K, et al. Foraging ecology and movement patterns of jumbo squid (Dosidicus gigas) in the California Current System[J]. Deep-Sea Res II, 2013, 95: 37-51. doi: 10.1016/j.dsr2.2012.09.006 [33] BRUNO C, CORNEJO C F, RIERA R, et al. What is on the menu? Feeding, consumption and cannibalism in exploited stocks of the jumbo squid Dosidicus gigas in south-central Chile[J]. Fish Res, 2021, 233: 105722. doi: 10.1016/j.fishres.2020.105722 [34] ARGÜELLES J, TAFUR R. New insights on the biology of the jumbo squid Dosidicus gigas in the Northern Humboldt Current System: size at maturity, somatic and reproductive investment[J]. Fish Res, 2010, 106(2): 185-192. doi: 10.1016/j.fishres.2010.06.005 [35] ANDERSON C I, RODHOUSE P G. Life cycles, oceanography and variability: ommastrephid squid in variable oceanographic environments[J]. Fish Res, 2001, 54(1): 133-143. doi: 10.1016/S0165-7836(01)00378-2 [36] KEYL F, ARGÜELLES J, TAFUR R. Interannual variability in size structure, age, and growth of jumbo squid (Dosidicus gigas) assessed by modal progression analysis[J]. ICES J Mar Sci, 2011, 68(3): 507-518. doi: 10.1093/icesjms/fsq167 [37] STEARNS S C. The path to life history evolution[J]. Bull Ecol Soc Am, 2014, 95(2): 121. doi: 10.1890/0012-9623-95.2.23 [38] SOKOLOVA I M, FREDERICH M, BAGWE R, et al. Energy homeostasis as an integrative tool for assessing limits of environmental stress tolerance in aquatic invertebrates[J]. Mar Environ Res, 2012, 79(0): 1-15. [39] MOLTSCHANIWSKYJ N A, MARTı́NEZ P. Effect of temperature and food levels on the growth and condition of juvenile Sepia elliptica (Hoyle 1885): an experimental approach[J]. J Exp Mar Bio Ecol, 1998, 229(2): 289-302. doi: 10.1016/S0022-0981(98)00058-6 [40] PECL G T, MOLTSCHANIWSKYJ N A. Life history of a short-lived squid (Sepioteuthis australis): resource allocation as a function of size, growth, maturation, and hatching season[J]. ICES J Mar Sci, 2006, 63(6): 995-1004. doi: 10.1016/j.icesjms.2006.04.007 [41] TAFUR R, KEYL F, ARGÜELLES J. Reproductive biology of jumbo squid Dosidicus gigas in relation to environmental variability of the northern Humboldt Current System[J]. Mar Ecol Prog Ser, 2010, 400: 127-141. doi: 10.3354/meps08386 -