Fish stock assessment based on abundance index and resilience: a case study of largehead hairtail in Sea of Japan and East China Sea
-
摘要: 为了解日本海和东海带鱼 (Trichiurus japonicus) 渔业资源状况,利用一种基于丰度指数的评估模型 (Abundance maximum sustainable yields, AMSY) 对2个海域的带鱼资源进行了评估。结果显示,2个海域的带鱼渔业在20世纪90年代至21世纪00年代的大部分时间里相对资源量水平 (B/BMSY) 低于1,而相对捕捞死亡水平 (F/FMSY) 高于1,处于过度捕捞状态。AMSY模型里相对最大可持续产量 (MSYq) 和MSY水平下的捕捞死亡系数 (FMSY) 等参数评估结果对不同内禀增长率 (r) 先验分布范围比较敏感,而B/BMSY和F/FMSY等生物学参考点评估结果对特定年份的相对资源量水平 (Bt/k) 先验分布范围的下限设置比较敏感。AMSY模型仅需要单位捕捞努力量渔获量 (Catch per unit effort, CPUE) 数据、评估对象的r和特定年份的Bt/k水平先验信息,可以评估基于MSY的生物学参考点 (B/BMSY和F/FMSY),适合无统计产量数据的海域内渔业资源评估。
-
关键词:
- 带鱼 /
- 单位捕捞努力量渔获量 /
- 剩余产量模型 /
- 数据缺乏 /
- 资源评估
Abstract: In order to understand the exploitation status of largehead hairtail (Trichiurus japonicus) fisheries in the Sea of Japan and the East China Sea, we used a fishery assessment model based on abundance index (Abundance maximum sustainable yields, AMSY) to assess the two fisheries. The results show that during most of the 1990s and 2000s, the relative biomass levels (B/BMSY) of the largehead hairtail fisheries in the two seas were lower than 1, but the relative fishing mortality levels (F/FMSY) were higher than 1, which indicates an overfished state. The estimated parameters such as relative maximum sustainable yield (MSYq) and relative fishing mortality at MSY level (FMSY) of the AMSY model were more sensitive to different prior distribution ranges of intrinsic rate of increase (r), while the estimated biological reference points (BRPs), i.e., F/FMSY and B/BMSY were more sensitive to the lower limit of different prior distribution ranges of relative biomass level (Bt/k). AMSY can estimate the BRPs of the target fisheries under MSY framework using only catch per unit effort (CPUE) data, prior information of r and relative biomass level for a specific year. AMSY is appropriate for fishery stock assessment in the sea areas where lack statistical data of catches. -
图 3 基于大型底拖网单位捕捞努力量渔获量的日本海带鱼渔业评估结果
注:a. 实际 CPUE 数据 (加粗实线) 与平滑后的 CPUE 数据 (灰色实线) 趋势; b. 灰色点表示 AMSY 模型中检验过的所有 r-kq 参数组合,黑色点表示通过 MCMC 过滤器检验的 r-kq 参数组合;c. 放大后的 r-kq 参数组合区域,红色十字星中心为所有参数组合的中值,红色线为95%置信区间;d—f. 加粗实线分别表示 C/MSY、F/FMSY 和 B/BMSY,水平虚线表示 3 个值为 1,虚折线为 95% 置信区间,红色虚线表示在此资源量水平 (B/BMSY<0.5) 之下资源补充会受损。后图同此。
Figure 3. Output of AMSY for largehead hairtail fishery in Sea of Japan using CPUE of large bottom trawl
Note: a. Trend between actual CPUE data (With thick solid line) and smoothed CPUE data (With gray solid line); b. The cloud of light grey dots indicates the r-kq pairs that were tested by AMSY. The black dots represent viable r-kq pairs that passed the MCMC filters; c. The magnified area was occupied by the viable r-kq pairs. The red cross indicates the most likely r-kq pair at its center as median of the cloud of black dots, with approximate 95% confidence limits in log space; d—f. The bold curves show a time series of the median relative catch (C/MSY), fishing pressure (F/FMSY), and relative stock size (B/BMSY) predicted by AMSY, respectively. The dotted curves are the approximate 95% confidence limits. The dashed red line indicates the stock size below which recruitment (B/BMSY<0.5) may be impaired. The same case in the following figures.
表 1 日本海和东海带鱼渔业参数评估结果
Table 1. Estimated results of fisheries parameters for largehead hairtail in Sea of Japan and East China Sea
参数
Parameter日本海大型
底拖网带鱼渔业
Large bottom trawl
fishery of largehead
hairtail in
Sea of Japan日本海近岸小型
底拖网带鱼渔业
Offshore bottom
trawl fishery of largehead
hairtail in Sea
of Japan基于机动渔船总CPUE的
东海带鱼渔业
Largehead hairtail
fishery in East
China Sea based on
total CPUE of motorized
fishing vessels基于双拖监测CPUE的
东海带鱼渔业
Largehead hairtail
fishery in East
China Sea based on
CPUE of pair-trawler相对环境容量 kq 39.0 (33.5, 45.9) 22.4 (18.8, 26.9) 0.632 (0.514, 0.765) 0.493 (0.325, 0.718) 最大可持续产量 MSYq 5.57 (4.53, 6.81) 3.18 (2.60, 3.94) 0.0895 (0.0696, 0.111) 0.0662 (0.0469, 0.0924) 内禀增长率 r 0.572 (0.449, 0.712) 0.566 (0.450, 0.728) 0.566 (0.443, 0.730) 0.537 (0.413, 0.691) MSY水平下的捕捞死亡系数 FMSY 0.286 (0.224, 0.356) 0.283 (0.225, 0.364) 0.283 (0.221, 0.365) 0.269 (0.206, 0.345) 2000年产量与最大可持续产量比值 C2000/MSY 0.990 (0.596, 1.51) 0.589 (0.261, 1.06) 0.696 (0.257, 1.26) 0.837 2000年相对捕捞死亡水平 F2000/FMSY 2.68 (1.38, 3.92) 1.34 (0.610, 2.56) 1.58 (0.680, 3.22) 1.53 2000年相对资源量 B2000/BMSY 0.370 (0.261, 0.533) 0.440 (0.362, 0.701) 0.442 (0.323, 0.712) 0.546 注:参数评估结果为中值,括号内数字为该参数的95%置信区间。
Note: The estimated parameters are presented as the median values, and the numbers in the brackets are the 95% confidence intervals.表 2 日本海大型底拖网带鱼渔业参数在不同r先验分布条件下的评估结果
Table 2. Estimated results of fisheries parameters for large bottom trawl largehead hairtail fishery in Sea of Japan under different r prior distributions
参数
Parameterr−U (0.32, 0.72) r−U (0.42, 0.72) r−U (0.42, 0.82) r−U (0.32, 0.82) 相对环境容量 kq 38.3 (33.0, 45.8) 39.0 (33.5, 45.9) 38.9 (33.6, 46.3) 38.4 (33.2, 45.7) 最大可持续产量 MSYq 5.14 (3.82, 7.10) 5.57 (4.53, 6.81) 6.08 (4.75, 7.96) 5.56 (4.07, 7.94) 内禀增长率 r 0.537 (0.385, 0.745) 0.572 (0.449, 0.712) 0.626 (0.480, 0.824) 0.579 (0.408, 0.846) MSY水平下的捕捞死亡系数 FMSY 0.269 (0.192, 0.373) 0.286 (0.224, 0.356) 0.313 (0.240, 0.412) 0.290 (0.204, 0.432) 2008年产量与最大可持续产量比值 C2008/MSY 0.211 (0.102, 0.497) 0.208 (0.104, 0.488) 0.206 (0.103, 0.490) 0.210 (0.096, 0.502) 2008年相对捕捞死亡水平 F2008/FMSY 1.58 (0.480, 3.27) 1.56 (0.552, 3.07) 1.56 (0.563, 3.06) 1.58 (0.488, 3.22) 2009年相对资源量 B2009/BMSY 0.136 (0.0762, 0.241) 0.135 (0.0751, 0.246) 0.135 (0.0748, 0.241) 0.136 (0.261, 0.533) 表 3 日本海大型底拖网带鱼渔业参数在不同B2000/k先验分布条件下的评估结果
Table 3. Estimated results of fisheries parameters for large bottom trawl largehead hairtail fishery in Sea of Japan under different B2000/k prior distributions
参数
ParameterB2000/k−U (0.05, 0.4) B2000/k−U (0.15, 0.4) B2000/k−U (0.15, 0.5) B2000/k−U (0.05, 0.5) 相对环境容量 kq 40.5 (34.1, 49.2) 39.0 (33.5, 45.9) 38.8 (33.5, 46.6) 39.7 (33.9, 48.1) 最大可持续产量 MSYq 5.66 (4.62, 6.94) 5.57 (4.53, 6.81) 5.56 (4.50, 6.93) 5.65 (4.58, 6.81) 内禀增长率 r 0.560 (0.439, 0.697) 0.572 (0.449, 0.712) 0.573 (0.449, 0.726) 0.569 (0.443, 0.706) MSY水平下的捕捞死亡系数 FMSY 0.280 (0.219, 0.349) 0.286 (0.224, 0.356) 0.287 (0.224, 0.363) 0.285 (0.221, 0.353) 2008年产量与最大可持续产量比值 C2008/MSY 0.189 (0.098, 0.473) 0.208 (0.104, 0.488) 0.203 (0.099, 0.491) 0.193 (0.092, 0.502) 2008年相对捕捞死亡水平 F2008/FMSY 1.50 (0.473, 3.090) 1.56 (0.552, 3.07) 1.54 (0.518, 3.17) 1.50 (0.471, 3.07) 2009年相对资源量 B2009/BMSY 0.129 (0.0717, 0.236) 0.135 (0.0751, 0.246) 0.135 (0.0737, 0.243) 0.132 (0.0733, 0.239) -
[1] PAULY D, ZELLER D. Catch reconstructions reveal that global marine fisheries catches are higher than reported and declining[J]. Nat Commun, 2016, 7: 10244. doi: 10.1038/ncomms10244 [2] KLEISNER K, ZELLER D, FROESE R, et al. Using global catch data for inferences on the world's marine fisheries[J]. Fish Fish, 2013, 14(3): 293-311. doi: 10.1111/j.1467-2979.2012.00469.x [3] MAUNDER M N, PUNT A E. A review of integrated analysis in fisheries stock assessment[J]. Fish Res, 2013, 142: 61-74. doi: 10.1016/j.fishres.2012.07.025 [4] COSTELLO C, OVANDO D, HILBORN R, et al. Status and solutions for the world's unassessed fisheries[J]. Science, 2012, 338(6106): 517-520. doi: 10.1126/science.1223389 [5] FROESE R, DEMIREL N, CORO G, et al. Estimating fisheries reference points from catch and resilience[J]. Fish Fish, 2017, 18: 506-526. doi: 10.1111/faf.12190 [6] FROESE R, WINKER H, CORO G, et al. A new approach for estimating stock status from length frequency data[J]. ICES J Mar Sci, 2018, 75(6): 2004-2015. doi: 10.1093/icesjms/fsy078 [7] FROESE R, WINKER H, CORO G, et al. Estimating stock status from relative abundance and resilience[J]. ICES J Mar Sci, 2020, 77(2): 527-538. doi: 10.1093/icesjms/fsz230 [8] 张魁, 廖宝超, 许友伟, 等. 基于渔业统计数据的南海区渔业资源可捕量评估[J]. 海洋学报, 2017, 39(8): 25-33. [9] ZHANG K, ZHANG J, XU Y, et al. Application of a catch-based method for stock assessment of three important fisheries in the East China Sea[J]. Acta Oceanol Sin, 2018, 37(2): 102-109. doi: 10.1007/s13131-018-1173-9 [10] JI Y, LIU Q, LIAO B, et al. Estimating biological reference points for largehead hairtail (Trichiurus lepturus) fishery in the Yellow Sea and Bohai Sea[J]. Acta Oceanol Sin, 2019, 38(10): 20-26. doi: 10.1007/s13131-019-1343-4 [11] WANG X, QIU Y, DU F, et al. Population parameters and dynamic pool models of commercial fishes in the Beibu Gulf, northern South China Sea[J]. Chin J Oceanol Limn, 2012, 30(1): 102-117. [12] 王淼娣, 王雪辉, 孙典荣, 等. 基于长度贝叶斯生物量估算法评估北部湾大头白姑鱼资源状况[J]. 南方水产科学, 2021, 17(2): 20-27. doi: 10.12131/20200202 [13] ZHANG L, REN Q, LIU M, et al. Fishery stock assessments in the Min River Estuary and Its adjacent waters in Southern China using the Length-Based Bayesian Estimation (LBB) method[J]. Front Mar Sci, 2020, 7: 507. doi: 10.3389/fmars.2020.00507 [14] ZHANG K, ZHANG J, SHI D, et al. Assessment of coral reef fish stocks from the Nansha Islands, South China Sea, using length-based Bayesian biomass estimation[J]. Front Mar Sci, 2021, 7: 610707. doi: 10.3389/fmars.2020.610707 [15] 徐兆礼, 陈佳杰. 再议东黄渤海带鱼种群划分问题[J]. 中国水产科学, 2016, 23(5): 1185-1196. [16] 李发凯. 东黄海带鱼资源变动的统计研究[D]. 舟山: 浙江海洋大学, 2016: 9-17. [17] 王垚. 伏季休渔条件下东海带鱼资源评估[D]. 舟山: 浙江海洋学院, 2010: 14-19. [18] 张魁, 陈作志. 应用贝叶斯状态空间建模对东海带鱼的资源评估[J]. 中国水产科学, 2015, 22(5): 1015-1026. [19] KAO W, TOMIYASU M, TAKAHASHI, R, et al. Spatial and temporal distribution of hairtail (Trichiurus japonicus) in the Bungo Channel, Japan[J]. J Mar Acous Soc Jpn, 2015, 42(4): 167-176. doi: 10.3135/jmasj.42.167 [20] WANG Y, LIU Q. Applications of CEDA and ASPIC computer packages to the hairtail (Trichiurus japonicus) fishery in the East China Sea[J]. Chin J Oceanol Limnol, 2013, 31(1): 92-96. doi: 10.1007/s00343-013-2073-7 [21] 凌建忠, 李圣法, 严利平, 等. 基于Beverton-Holt 模型的东海带鱼资源利用与管理[J]. 应用生态学报, 2008, 19(1): 178-182. [22] 王跃中, 贾晓平, 林昭进, 等. 东海带鱼渔获量对捕捞压力和气候变动的响应[J]. 水产学报, 2011, 35(12): 1881-1889. [23] 张魁, 刘群, 廖宝超, 等. 渔业数据失真对两种非平衡剩余产量模型评估结果的影响比较[J]. 水产学报, 2018, 42(9): 1378-1389. [24] 李纲, 陈新军, 官文江. 基于贝叶斯方法的东、黄海鲐资源评估及管理策略风险分析[J]. 水产学报, 2010, 34(5): 740-750. [25] SILLIMAN R P, GUTSELL J S. Experimental exploitation of fish populations[J]. Fish B-NOAA, 1958, 58: 214-252. -