留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

饲料中添加纳米氧化铈对氨氮与嗜水气单胞菌胁迫下中华绒螯蟹的保护效应

孙元琛 徐冰洁 曹艺筹 许颖洁 秦粉菊 袁红霞

孙元琛, 徐冰洁, 曹艺筹, 许颖洁, 秦粉菊, 袁红霞. 饲料中添加纳米氧化铈对氨氮与嗜水气单胞菌胁迫下中华绒螯蟹的保护效应[J]. 南方水产科学. doi: 10.12131/20210209
引用本文: 孙元琛, 徐冰洁, 曹艺筹, 许颖洁, 秦粉菊, 袁红霞. 饲料中添加纳米氧化铈对氨氮与嗜水气单胞菌胁迫下中华绒螯蟹的保护效应[J]. 南方水产科学. doi: 10.12131/20210209
SUN Yuanchen, XU Bingjie, CAO Yichou, XU Yingjie, QIN Fenju, YUAN Hongxia. Protective effects of addition of nano cerium oxide in diets on Eriocheir sinensis under ammonia-nitrogen and Aeromonas hydrophila stresses[J]. South China Fisheries Science. doi: 10.12131/20210209
Citation: SUN Yuanchen, XU Bingjie, CAO Yichou, XU Yingjie, QIN Fenju, YUAN Hongxia. Protective effects of addition of nano cerium oxide in diets on Eriocheir sinensis under ammonia-nitrogen and Aeromonas hydrophila stresses[J]. South China Fisheries Science. doi: 10.12131/20210209

饲料中添加纳米氧化铈对氨氮与嗜水气单胞菌胁迫下中华绒螯蟹的保护效应

doi: 10.12131/20210209
基金项目: 中国博士后基金项目 (2016M601883);苏州市科技计划项目 (SNG2017055)
详细信息
    作者简介:

    孙元琛 (1995—),男,硕士研究生,研究方向为环境生物技术。E-mail: sunyuancheny@163.com

    通讯作者:

    秦粉菊 (1976—),女,教授,博士,从事环境毒理学和纳米营养学研究。E-mail: qinfenju@mail.usts.edu.cn

  • 中图分类号: S 917.4

Protective effects of addition of nano cerium oxide in diets on Eriocheir sinensis under ammonia-nitrogen and Aeromonas hydrophila stresses

  • 摘要: 为探索中华绒螯蟹 (Eriocheir sinensis) 应对不良水环境胁迫的作用机制,该研究通过在饲料中添加纳米氧化铈 (nCeO2) ,探究其对氨氮 (NH3-N) 与嗜水气单胞菌 (Aeromonas hydrophila) 胁迫下中华绒螯蟹免疫力和抗氧化能力的影响。用含不同剂量nCeO2 (0、0.2、0.4、0.8、1.6、3.2、6.4和12.8 mg·kg−1) 的饲料连续饲喂中华绒螯蟹90 d后进行NH3-N与嗜水气单胞菌胁迫实验。结果显示:1) NH3-N单胁迫和NH3-N与嗜水气单胞菌双胁迫(下文简称“双胁迫”)均显著降低了中华绒螯蟹的成活率 (P<0.01),酸性磷酸酶 (ACP)、碱性磷酸酶 (AKP) 和溶菌酶 (LZM) 活性均显著上升 (P<0.01或P<0.05),超氧化物歧化酶 (SOD) 和过氧化氢酶 (CAT) 活性均显著下降 (P<0.01),丙二醛 (MDA)显著上升 (P<0.01或P<0.05);2) 适量的nCeO2可显著提升NH3-N单胁迫和双胁迫下中华绒螯蟹的成活率 (P<0.01或P<0.05),增强其SOD和CAT活性 (P<0.01),降低MDA浓度 (P<0.01或P<0.05) ,进一步提升LZM活性 (P<0.01),但ACP和AKP活性仅在双胁迫下进一步增强 (P<0.01)。综上,适量添加nCeO2可改善NH3-N单胁迫和双胁迫所造成的中华绒螯蟹成活率和抗氧化能力下降,提高其免疫酶活性,且添加0.8、1.6 mg·kg−1 nCeO2分别对单胁迫和双胁迫下的蟹体保护作用最明显。
  • 图  1  不同剂量纳米氧化铈对氨氮与嗜水气单胞菌胁迫下中华绒螯蟹成活率的影响

    nCeO2剂量0 mg·kg−1组中,单胁迫和双胁迫处理分别与空白 (无胁迫) 处理相比,*. P <0.05,**. P <0.01;7个添加剂量组分别与相同胁迫处理下的nCeO2添加0 mg·kg−1组比较,#. P <0.05,##. P<0.01;后图同此。

    Figure  1.  Effects of different doses of nCeO2 on survival rates of E. sinensis under ammonia nitrogen and A. hydrophila stresses

    In 0 mg·kg−1 nCeO2 group, single stress and dual stress groups compared with the blank group, *. P <0.05, **. P <0.01; each dose group compared with the 0 mg·kg−1 nCeO2 dose group under the same stress treatment, #. P <0.05,##. P<0.01. The same below.

    图  2  不同剂量纳米氧化铈对氨氮与嗜水气单胞菌胁迫下中华绒螯蟹酸性磷酸酶、碱性磷酸酶和溶菌酶活性的影响

    Figure  2.  Effects of different doses of nCeO2 on ACP, AKP and LZM activities of E. sinensis under ammonia nitrogen and A. hydrophila stresses

    图  3  不同剂量纳米氧化铈对不同条件下中华绒螯蟹超氧化物歧化酶、过氧化氢酶活性和丙二醛浓度的影响

    Figure  3.  Effects of different doses of nCeO2 on SOD, CAT activities and MDA concentration of E. sinensis under ammonia nitrogen and A. hydrophila stresses

    表  1  实验设计分组与胁迫处理

    Table  1.   Experimental group design and stress treatment

    纳米氧化铈剂量
    nCeO2 dose/
    (mg·kg−1)
    胁迫处理
    Stress
    treatment
    氨氮胁迫
    NH3-N
    stress
    嗜水气单胞菌注射
    A. hydrophila
    injection
    0 空白组
    单胁迫组 +
    双胁迫组 + +
    0.2 空白组
    单胁迫组 +
    双胁迫组 + +
    0.4 空白组
    单胁迫组 +
    双胁迫组 + +
    0.8 空白组
    单胁迫组 +
    双胁迫组 + +
    1.6 空白组
    单胁迫组 +
    双胁迫组 + +
    3.2 空白组
    单胁迫组 +
    双胁迫组 + +
    6.4 空白组
    单胁迫组 +
    双胁迫组 + +
    12.8 空白组
    单胁迫组 +
    双胁迫组 + +
    下载: 导出CSV
  • [1] 农业部渔业渔政管理局. 2020中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2020: 24.
    [2] PAN L, SI L, LIU S, et al. Levels of metabolic enzymes and nitrogenous compounds in the swimming crab Portunus trituberculatus exposed to elevated ambient ammonia-N[J]. J Ocean U China, 2018, 17(4): 957-966. doi: 10.1007/s11802-018-3574-y
    [3] SEO J S, HAQUE M N, NAM S E, et al. Inorganic nitrogen compounds reduce immunity and induce oxidative stress in red seabream[J]. Fish Shellfish Immunol, 2020, 104: 237-244. doi: 10.1016/j.fsi.2020.05.072
    [4] 王安琪, 郭立, 崔培, 等. 不同水平低聚木糖对凡纳滨对虾生长、免疫及抗氨氮胁迫能力的影响[J]. 中国饲料, 2019(7): 56-65.
    [5] 彭军辉, 陈丽英, 程长洪, 等. 氨氮对拟穴青蟹的急性毒性及对其血清免疫相关酶活力的影响[J]. 渔业科学进展, 2018, 39(5): 114-121.
    [6] 曾媛媛, 蒋云霞, 艾春香. 氨氮胁迫对拟穴青蟹组织器官中SOD及GPX活性的影响[J]. 台湾海峡, 2011, 30(2): 210-215.
    [7] 成亚辉, 王子艺, 高栋业, 等. 噬菌体防治嗜水气单胞菌相关疾病的研究进展[J]. 贵州农业科学, 2020, 48(11): 48-53. doi: 10.3969/j.issn.1001-3601.2020.11.012
    [8] 程超, 肖敏, 李菁, 等. 嗜水气单胞菌刺激对中华绒螯蟹免疫的影响[J]. 水产科学, 2020, 39(4): 465-475.
    [9] 张磊. 中华鳖养殖水体的环境因子调查与机体致病菌研究[D]. 保定: 河北大学, 2009: 18-40.
    [10] 岳峰, 潘鲁青, 谢鹏, 等. 氨氮胁迫对三疣梭子蟹酚氧化酶原系统和免疫指标的影响[J]. 中国水产科学, 2010, 17(4): 761-770.
    [11] SARAVANAKUMAR K, SATHIYASEELAN A, MARIADOSS A V A, et al. Antioxidant and antidiabetic properties of biocompatible ceria oxide (CeO2) nanoparticles in mouse fibroblast NIH3T3 and insulin resistant HepG2 cells[J]. Ceram Int, 2021, 47(6): 8618-8626. doi: 10.1016/j.ceramint.2020.11.230
    [12] AMIRI F T, HAMZEH M, BEKLAR S Y, et al. Anti-apoptotic and antioxidant effect of cerium oxide nanoparticles on cyclophosphamide-induced hepatotoxicity[J]. Erciyes Med J, 2018, 40(3): 148-54. doi: 10.5152/etd.2018.0016
    [13] ADEBAYO O A, AKINLOYE O, ADARAMOYE O A. Cerium oxide nanoparticles attenuate oxidative stress and inflammation in the liver of diethylnitrosamine-treated mice[J]. Biol Trace Elem Res, 2020, 193(1): 214-225. doi: 10.1007/s12011-019-01696-5
    [14] QIN F, SHEN T, YANG H, et al. Dietary nano cerium oxide promotes growth, relieves ammonia nitrogen stress, and improves immunity in crab (Eriocheir sinensis)[J]. Fish Shellfish Immun, 2019, 92: 367-376. doi: 10.1016/j.fsi.2019.06.019
    [15] ZHAO J H, LAM T J, GUO J Y. Acute toxicity of ammonia to the early stage ‐ larvae and juveniles of Eriocheir sinensis H. Milne-Edwards, 1853 (Decapoda: Grapsidae) reared in the laboratory[J]. Aquac Res, 1997, 28(7): 517-525. doi: 10.1111/j.1365-2109.1997.tb01070.x
    [16] CONG M, WU H, CAO T, et al. Digital gene expression analysis in the gills of Ruditapes philippinarum exposed to short-and long-term exposures of ammonia nitrogen[J]. Aquat Toxicol, 2018, 194: 121-131. doi: 10.1016/j.aquatox.2017.11.012
    [17] FRÍAS-ESPERICUETA M G, HARFUSH-MELENDEZ M, OSUNA-LÓPEZ J I, et al. Acute toxicity of ammonia to juvenile shrimp Penaeus vannamei Boone[J]. Bull Environ Contam Toxicol, 1999, 62(5): 646-652. doi: 10.1007/s001289900923
    [18] CHENG C H, YANG F F, LIAO S A, et al. Effect of acute ammonia exposure on expression of GH/IGF axis genes GHR1, GHR2 and IGF-1 in pufferfish (Takifugu obscurus)[J]. Fish Physiol Biochem, 2015, 41(2): 495-507. doi: 10.1007/s10695-015-0025-1
    [19] 黄鹤忠, 李义, 宋学宏, 等. 氨氮胁迫对中华绒螯蟹 (Eriocheir sinensis) 免疫功能的影响[J]. 海洋与湖沼, 2006, 37(3): 198-205. doi: 10.3321/j.issn:0029-814X.2006.03.002
    [20] SHI M, JIANG S, LI Y, et al. Comprehensive expression analysis of the beta integrin from Penaeus monodon indicating its participation in innate immunity and ammonia nitrogen stress response[J]. Fish Shellfish Immunol, 2020, 98: 887-898. doi: 10.1016/j.fsi.2019.11.049
    [21] HIRST S M, KARAKOTO A, SINGH S, et al. Bio-distribution and in vivo antioxidant effects of cerium oxide nanoparticles in mice[J]. Environ Toxicol, 2013, 28(2): 107-118. doi: 10.1002/tox.20704
    [22] AMIN K A, HASSAN M S, AWAD E S T, et al. The protective effects of cerium oxide nanoparticles against hepatic oxidative damage induced by monocrotaline[J]. Int J Nanomedicine, 2011, 6: 143. doi: 10.2217/nnm.10.139
    [23] CHECA J, ARAN J M. Reactive oxygen species: drivers of physiological and pathological processes[J]. J Inflamm Res, 2020, 13: 1057-1073. doi: 10.2147/JIR.S275595
    [24] ABRAMOV A Y, POTAPOVA E V, DREMIN V V, et al. Interaction of oxidative stress and misfolded proteins in the mechanism of neurodegeneration[J]. Life (Basel), 2020, 10(7): 101.
    [25] BARBOSA M L, de Meneses A A P M, de AGUIAR R P S, et al. Oxidative stress, antioxidant defense and depressive disorders: a systematic review of biochemical and molecular markers[J]. Neurol Psychiatry Brain Res, 2020, 36: 65-72. doi: 10.1016/j.npbr.2020.02.006
    [26] JING H, ZHANG Q, GAO X J. Excessive lithium of water induced a toxic effect on kidney via oxidative damage and inflammation in carp[J]. Aquaculture, 2020, 535(5): 736282.
    [27] DONG J, CHENG R, YANG Y, et al. Effects of dietary taurine on growth, non-specific immunity, anti-oxidative properties and gut immunity in the Chinese mitten crab Eriocheir sinensis[J]. Fish Shellfish Immunol, 2018, 82: 212-219. doi: 10.1016/j.fsi.2018.08.029
    [28] YANG X, SHI A, SONG Y, et al. The effects of ammonia-N stress on immune parameters, antioxidant capacity, digestive function, and intestinal microflora of Chinese mitten crab, Eriocheir sinensis, and the protective effect of dietary supplement of melatonin[J]. Comp Biochem Phys C, 2021, 250: 109127.
    [29] SINHA A K, ABDEIGAWAD H, GIBLEN T, et al. Anti-oxidative defences are modulated differentially in three freshwater teleosts in response to ammonia-induced oxidative stress[J]. PLoS One, 2014, 9(4): e95319. doi: 10.1371/journal.pone.0095319
    [30] 管敏, 张德志, 唐大明. 慢性氨氮胁迫对史氏鲟幼鱼生长及其肝脏抗氧化, 免疫指标的影响[J]. 南方水产科学, 2020, 16(2): 36-42. doi: 10.12131/20190191
    [31] 洪美玲, 陈立侨, 顾顺樟, 等. 氨氮胁迫对中华绒螯蟹免疫指标及肝胰腺组织结构的影响[J]. 中国水产科学, 2007, 14(3): 412-418. doi: 10.3321/j.issn:1005-8737.2007.03.010
    [32] WEI J, YU N, TIAN W, et al. Dietary vitamin B12 requirement and its effect on non-specific immunity and disease resistance in juvenile Chinese mitten crab Eriocheir sinensis[J]. Aquaculture, 2014, 434: 179-183. doi: 10.1016/j.aquaculture.2014.08.010
    [33] LIU F, QU Y K, GENG C, et al. Effects of hesperidin on the growth performance, antioxidant capacity, immune responses and disease resistance of red swamp crayfish (Procambarus clarkii)[J]. Fish Shellfish Immunol, 2020, 99: 154-166. doi: 10.1016/j.fsi.2020.02.014
    [34] DONG J, CHENG R, YANG Y, et al. Effects of dietary taurine on growth, non-specific immunity, anti-oxidative properties and gut immunity in the Chinese mitten crab Eriocheir sinensis[J]. Fish Shellfish Immunol, 2018, 82: 212-219. doi: 10.1016/j.fsi.2018.08.029
    [35] XUE Q, RENAULT T. Enzymatic activities in European flat oyster, Ostrea edulis, and Pacific oyster, Crassostrea gigas, hemolymph[J]. J Invertebr Pathol, 2000, 76(3): 155-163. doi: 10.1006/jipa.2000.4965
    [36] SAURABH S, SAHOO P K. Lysozyme: an important defence molecule of fish innate immune system[J]. Aquac Res, 2008, 39(3): 223-239. doi: 10.1111/j.1365-2109.2007.01883.x
    [37] RAGLAND S A, CRISS A K. From bacterial killing to immune modulation: recent insights into the functions of lysozyme[J]. PLoS Pathog, 2017, 13(9): e1006512. doi: 10.1371/journal.ppat.1006512
    [38] MOCK A, PETERS G. Lysozyme activity in rainbow trout, Oncorhynchus mykiss (Walbaum), stressed by handling, transport and water pollution[J]. J Fish Biol, 1990, 37(6): 873-885. doi: 10.1111/j.1095-8649.1990.tb03591.x
    [39] KUEBUTORNYE F K A, WANG Z, LU Y, et al. Effects of three host-associated Bacillus species on mucosal immunity and gut health of Nile tilapia, Oreochromis niloticus and its resistance against Aeromonas hydrophila infection[J]. Fish Shellfish Immunol, 2020, 97: 83-95. doi: 10.1016/j.fsi.2019.12.046
    [40] 艾春香, 曾媛媛. 氨氮胁迫对拟穴青蟹腺苷三磷酸酶和磷酸酶比活力的影响[J]. 厦门大学学报 (自然科学版), 2011, 50(4): 772-778.
    [41] REDLING K. Rare earth elements in agriculture with emphasis on animal husbandry[D]. Muenchen: Diss Ludwig-Maximilians-Universitaet, 2006: 325.
    [42] PAEMEL M V, DIERICK N, JANSSENS G, et al. Selected trace and ultratrace elements: biological role, content in feed and requirements in animal nutrition-elements for risk assessment[R] Efsa Support Publ, 2010: 1-8.
  • 加载中
图(3) / 表(1)
计量
  • 文章访问数:  23
  • HTML全文浏览量:  10
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-26
  • 修回日期:  2021-10-23
  • 录用日期:  2021-11-05
  • 网络出版日期:  2021-11-11

目录

    /

    返回文章
    返回