Advances on antibiotic resistance genes (ARGs) in aquaculture environment
-
摘要: 抗生素对水产养殖业中水生生物疾病防治、生产线增产等发挥着重要作用,但长期滥用抗生素很可能诱导水生生物体内产生携带抗生素抗性基因 (Antibiotic resistant genes, ARGs) 的耐药菌 (Antibiotic resistant bacteria, ARB)。ARGs在水产养殖环境中的持久性残留、迁移和传播,会埋下基因污染隐患,导致生态失衡并危害人类安全,如何遏制抗生素抗性的传播已引起全球重点关注。就水产养殖环境中ARGs的研究进展,系统总结了ARGs的污染现状及其在水产养殖环境中的来源,迁移传播和影响因素,并简述了ARGs与抗生素、微生物群落和环境因素之间的关联特性,以及抗生素、ARGs和ARB对生态环境与人类健康的影响。基于此,概述了ARGs的控制策略与去除技术,并提出了今后的研究方向,以期为水产养殖环境中ARGs污染机理的解析和抗生素抗性传播风险的控制提供科学参考。Abstract: Antibiotics play a significant role in the disease control of aquatic organisms and output increase of aquatic products. However, the long-term abuse of antibiotics can result in the occurrence of antibiotic resistant bacteria (ARB) which harbor antibiotics resistance genes (ARGs) in aquatic organisms. The persistent existence, migration and spread of ARGs in aquaculture environment will potentially cause genetic pollution, destroy the ecological balance, and pose risks to human health. Therefore, how to constrain the spread of antibiotic resistance has attracted global attention. In terms of the research advancement of ARGs in aquaculture environment, this review systematically summarizes the status of ARGs pollution coupled with the source, migration and spread behavior of ARGs and their influencing factors, illustrates the correlations between ARGs and antibiotics, microbial communities and environmental factors, as well as discusses the effect of antibiotics, ARGs and ARB on ecological environment and human health. On this basis, it overviews the management strategies and removal technologies of ARGs, and proposes the future research directions regarding ARGs. The review aims to provide reference in revealing the pollution mechanism of ARGs and reducing the transmission risk of antibiotic resistance.
-
表 1 现有技术对ARGs的去除效果
Table 1. Reduction efficiency of ARGs by prior technologies
去除技术
Removal technology去除原理
Removal principle去除效果
Reduction efficiency参考文献
Reference添加大孔吸附树脂
Adding macroporous adsorption resin (MAR)MAR是一种多孔交联聚合物,能够降低ARGs和微生物群落的丰度,并且通过吸附重金属以降低其对ARGs的协同效应和选择压力。 ARGs (14.14%~99.44%)和MGEs (47.83%~99.48%)的丰度显著降低。 [101] UV/氯消毒
UV/chlorineUV/氯协同作用可以有效灭活ARB、打破ARGs结构和抑制ARGs的水平转移。 UV (320 mJ·cm−2)/氯(2 mg·L−1)协同作用下,ARGs的去除率增强了1~1.5 log。 [102] 臭氧后处理
Ozone post-treatment臭氧具有高氧化电位 (2.07 V),可以有效去除ARGs和ARB。 胞内ARGs (iARGs)的去除率达到89%。 [103] 高铁酸盐
Ferrate高铁酸盐作为一种高价铁基氧化剂,其强氧化电位能够直接去除ARGs,且具备较强的杀菌效能,能够灭活携带ARGs的细菌,从而抑制ARGs的垂直转移。 高铁酸盐的剂量为10 mg-Fe·L−1时,ARGs的去除率达到1.10~4.37 log。 [104] 生物过滤
Biofiltration水体中的微生物会附着在过滤介质 (石英砂,颗粒活性炭和无烟煤等) 表面并形成生物膜。 ARGs平均丰度降低了0.97 log。 [105] 污泥处理湿地
Sludge treatment wetlands (STWs)STWs法是传统沙干化床和垂直流人工湿地的联合技术,剩余污泥进入湿地后会形成不同污泥层,而植物在其中生长,有利于稳定污泥、减少污泥体积和去除ARGs等污染物。 磺胺类ARGs的丰度降低了21%。 [106] -
[1] FANG H, HUANG K L, YU J N, et al. Metagenomic analysis of bacterial communities and antibiotic resistance genes in the Eriocheir sinensis freshwater aquaculture environment[J]. Chemosphere, 2019, 224: 202-211. doi: 10.1016/j.chemosphere.2019.02.068 [2] MO W Y, CHEN Z, LEUNG H M, et al. Application of veterinary antibiotics in China's aquaculture industry and their potential human health risks[J]. Environ Sci Pollut Res, 2017, 24: 8978-8989. doi: 10.1007/s11356-015-5607-z [3] BRUNTON L A, DESBOIS A P, GARZA M, et al. Identifying hotspots for antibiotic resistance emergence and selection, and elucidating pathways to human exposure: application of a systems-thinking approach to aquaculture systems[J]. Sci Total Environ, 2019, 687: 1344-1356. doi: 10.1016/j.scitotenv.2019.06.134 [4] 罗义, 周启星. 抗生素抗性基因(ARGs)—一种新型环境污染物[J]. 环境科学学报, 2008, 28(8): 1499-1505. doi: 10.3321/j.issn:0253-2468.2008.08.002 [5] KUMAR M, RAM B, HONDA R, et al. Concurrence of antibiotic resistant bacteria (ARB), viruses, pharmaceuticals and personal care products (PPCPs) in ambient waters of Guwahati, India: Urban vulnerability and resilience perspective[J]. Sci Total Environ, 2019, 693: 133640. doi: 10.1016/j.scitotenv.2019.133640 [6] EBELE A J, ABOU-ELWAFA ABDALLAH M, HARRAD S. Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment[J]. Emerging Contam, 2017, 3(1): 1-16. doi: 10.1016/j.emcon.2016.12.004 [7] MO W Y, CHEN Z T, LEUNG H M, et al. Application of veterinary antibiotics in China's aquaculture industry and their potential human health risks[J]. Environ Sci Pollut Res, 2017, 24: 8978-8989. doi: 10.1007/s11356-015-5607-z [8] YANG J F, YING G G, ZHAO J L, et al. Spatial and seasonal distribution of selected antibiotics in surface waters of the Pearl Rivers, China[J]. J Environ Sci Health B, 2011, 46(3): 272-280. doi: 10.1080/03601234.2011.540540 [9] SUN Q, LI Y, LI M Y, et al. PPCPs in Jiulong River estuary (China): spatiotemporal distributions, fate, and their use as chemical markers of wastewater[J]. Chemosphere, 2016, 150: 596-604. doi: 10.1016/j.chemosphere.2016.02.036 [10] 武旭跃, 邹华, 朱荣, 等. 太湖贡湖湾水域抗生素污染特征分析与生态风险评价[J]. 环境科学, 2016, 37(12): 4596-4604. [11] ZHANG M, CAI Z X, ZHANG G F, et al. Effectively reducing antibiotic contamination and resistance in fishery by efficient gastrointestine-blood delivering dietary millispheres[J]. J Hazard Mater, 2021, 409: 125012. doi: 10.1016/j.jhazmat.2020.125012 [12] ZHAO H, ZHOU J L, ZHANG J. Tidal impact on the dynamic behavior of dissolved pharmaceuticals in the Yangtze Estuary, China[J]. Sci Total Environ, 2015, 536: 946-954. doi: 10.1016/j.scitotenv.2015.06.055 [13] YANG Y, QIU W Q, LI Y X, et al. Antibiotic residues in poultry food in Fujian Province of China[J]. Food Addit Contam B, 2020, 13(3): 177-184. doi: 10.1080/19393210.2020.1751309 [14] XU T W. Contemporary global health security and China's strategy[J]. J Int Stud, 2017, 38(3): 9-37. [15] PRUDEN A, PEI R, STORTEBOOM H, et al. Antibiotic resistance genes as emerging contaminants: studies in Northern Colorado[J]. Environ Sci Technol, 2006, 40(23): 7445-7450. doi: 10.1021/es060413l [16] MIRANDA C D, GODOY F A, LEE M R. Current status of the use of antibiotics and the antimicrobial resistance in the Chilean salmon farms[J]. Front Microbiol, 2018, 9: 1284. doi: 10.3389/fmicb.2018.01284 [17] GAO P P, MAO D Q, LUO Y, et al. Occurrence of sulfonamide and tetracycline-resistant bacteria and resistance genes in aquaculture environment[J]. Water Res, 2012, 46(7): 2355-2364. doi: 10.1016/j.watres.2012.02.004 [18] PEREIRA A M P T, SILVA L J G, MEISEL L M, et al. Fluoroquinolones and tetracycline antibiotics in a Portuguese aquaculture system and aquatic surroundings: occurrence and environmental impact[J]. J Toxicol Env Heal A, 2015, 78(15): 959-975. doi: 10.1080/15287394.2015.1036185 [19] CESARE A D, LUNA G M, VIGNAROLI C, et al. Aquaculture can promote the presence and spread of antibiotic-resistant Enterococci in marine sediments[J]. Plos One, 2013, 8(4): e62838. doi: 10.1371/journal.pone.0062838 [20] SU H C, HU X J, WANG L L, et al. Contamination of antibiotic resistance genes (ARGs) in a typical marine aquaculture farm: source tracking of ARGs in reared aquatic organisms[J]. J Environ Sci Heal B, 2020, 55(3): 220-229. doi: 10.1080/03601234.2019.1684747 [21] LIU X, WANG H, ZHAO H M. Propagation of antibiotic resistance genes in an industrial recirculating aquaculture system located at northern China[J]. Environ Pollut, 2020, 261: 114155. doi: 10.1016/j.envpol.2020.114155 [22] SU H C, LIU S, HU X J, et al. Occurrence and temporal variation of antibiotic resistance genes (ARGs) in shrimp aquaculture: ARGs dissemination from farming source to reared organisms[J]. Sci Total Environ, 2017, 607-608: 357-366. doi: 10.1016/j.scitotenv.2017.07.040 [23] D'COSTA V M, KING C E, KALAN L, et al. Antibiotic resistance is ancient.[J]. Nature, 2011, 477: 457-461. doi: 10.1038/nature10388 [24] 苏建强, 黄福义, 朱永官. 环境抗生素抗性基因研究进展[J]. 生物多样性, 2013, 21(4): 481-487. [25] 张骞月, 赵婉婉, 吴伟. 水产养殖环境中抗生素抗性基因污染及其研究进展[J]. 中国农业科技导报, 2015, 17(6): 125-134. [26] SUCHLAND R J, SANDOZ K M, JEFFREY B M, et al. Horizontal transfer of tetracycline resistance among Chlamydia spp. in vitro.[J]. Antimicrob Agents Chem, 2009, 53(11): 4604-4611. doi: 10.1128/AAC.00477-09 [27] TONG J, TANG A P, WANG H Y, et al. Microbial community evolution and fate of antibiotic resistance genes along six different full-scale municipal wastewater treatment processes[J]. Bioresour Technol, 2019, 272: 489-500. doi: 10.1016/j.biortech.2018.10.079 [28] HE Y, YUAN Q B, MATHIEU J, et al. Antibiotic resistance genes from livestock waste: occurrence, dissemination, and treatment[J]. NPJ Clean Water, 2020, 3: 4. doi: 10.1038/s41545-020-0051-0 [29] SINGER A C, HELEN S, VICKI R, et al. Review of Antimicrobial resistance in the environment and its relevance to environmental regulators[J]. Front Microbiol, 2016, 7: 1728. [30] CHEN H, LIU S, XU X R, et al. Tissue distribution, bioaccumulation characteristics and health risk of antibiotics in cultured fish from a typical aquaculture area[J]. J Mater Sci, 2018, 343: 140-148. [31] PETCHIAPPAN A, CHATTERJI D. Antibiotic resistance: current perspectives[J]. ACS Omega, 2017, 2(10): 7400-7409. doi: 10.1021/acsomega.7b01368 [32] NOMAN E, AL-GHEETHI A, RADIN MOHAMED R M S, et al. Quantitative microbiological risk assessment of complex microbial community in prawn farm wastewater and applicability of nanoparticles and probiotics for eliminating of antibiotic-resistant bacteria[J]. J Hazard Mater, 2021, 419: 126418. doi: 10.1016/j.jhazmat.2021.126418 [33] PRUDEN A. Balancing water sustainability and public health goals in the face of growing concerns about antibiotic resistance[J]. Environ Sci Technol, 2014, 48(1): 5-14. doi: 10.1021/es403883p [34] GAO P, MUNIR M, XAGORARAKI I. Correlation of tetracycline and sulfonamide antibiotics with corresponding resistance genes and resistant bacteria in a conventional municipal wastewater treatment plant[J]. Sci Total Environ, 2012, 421/422: 173-183. doi: 10.1016/j.scitotenv.2012.01.061 [35] TELLO A, TELFER A T C. Selective pressure of antibiotic pollution on bacteria of importance to public health[J]. Environ Health Perspect, 2012, 120(8): 1100-1106. doi: 10.1289/ehp.1104650 [36] GILLINGS M R, GAZE W H, PRUDEN A, et al. Using the class 1 integron-integrase gene as a proxy for anthropogenic pollution[J]. ISME J, 2015, 9(6): 1269-1279. doi: 10.1038/ismej.2014.226 [37] HARNISZ M, KORZENIEWSKA E, GOLAS I. The impact of a freshwater fish farm on the community of tetracycline-resistant bacteria and the structure of tetracycline resistance genes in river water[J]. Chemosphere, 2015, 128: 134-141. doi: 10.1016/j.chemosphere.2015.01.035 [38] ZAINAB S M, JUNAID M, XU N, et al. Antibiotics and antibiotic resistant genes (ARGs) in groundwater: a global review on dissemination, sources, interactions, environmental and human health risks[J]. Water Res, 2020, 187: 116455. doi: 10.1016/j.watres.2020.116455 [39] AKINBOWALE O L, PENG H, BARTON M D. Diversity of tetracycline resistance genes in bacteria from aquaculture sources in Australia[J]. J Appl Microbiol, 2010, 103(5): 2016-2025. [40] LIANG X M, GUAN F L, CHEN B W, et al. Spatial and seasonal variations of antibiotic resistance genes and antibiotics in the surface waters of Poyang Lake in China[J]. Ecotox Environ Safe, 2020, 196: 110543. doi: 10.1016/j.ecoenv.2020.110543 [41] HE L Y, LIU Y S, SU H C, et al. Dissemination of antibiotic resistance genes in representative broiler feedlots environments: identification of indicator ARGs and correlations with environmental variables[J]. Environ Sci Technol, 2014, 48: 13120-13129. doi: 10.1021/es5041267 [42] FANG H S, ZHANG Q, NIE X P, et al. Occurrence and elimination of antibiotic resistance genes in a long-term operation integrated surface flow constructed wetland[J]. Chemosphere, 2017, 173: 99-106. doi: 10.1016/j.chemosphere.2017.01.027 [43] WU J J, SU Y L, DENG Y Q, et al. Prevalence and distribution of antibiotic resistance in marine fish farming areas in Hainan, China[J]. Sci Total Environ, 2019, 653: 605-611. doi: 10.1016/j.scitotenv.2018.10.251 [44] SU H C, HU X J, XU Y, et al. Persistence and spatial variation of antibiotic resistance genes and bacterial populations change in reared shrimp in South China[J]. Environ Int, 2018, 119: 327-333. doi: 10.1016/j.envint.2018.07.007 [45] JIA S Y, ZHANG X X, MIAO Y, et al. Fate of antibiotic resistance genes and their associations with bacterial community in livestock breeding wastewater and its receiving river water[J]. Water Res, 2017, 124: 259-268. doi: 10.1016/j.watres.2017.07.061 [46] ZHOU M, XU Y B, OU Y, et al. Evolution and distribution of resistance genes and bacterial community in water and biofilm of a simulated fish-duck integrated pond with stress[J]. Chemosphere, 2020, 245: 125549. doi: 10.1016/j.chemosphere.2019.125549 [47] HE X L, XU Y B, CHEN J L, et al. Evolution of corresponding resistance genes in the water of fish tanks with multiple stresses of antibiotics and heavy metals[J]. Water Res, 2017, 124: 39-48. doi: 10.1016/j.watres.2017.07.048 [48] WANG Q, LIU L, HOU Z L, et al. Heavy metal copper accelerates the conjugative transfer of antibiotic resistance genes in freshwater microcosms[J]. Sci Total Environ, 2020, 717: 137055. doi: 10.1016/j.scitotenv.2020.137055 [49] SEILER C, BERENDONK T. Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture[J]. Front Microbiol, 2012, 3: 399. [50] MAXIMILIANO N, MARINA S P, SOLEDAD R M, et al. Class 1 integrons in environments with different degrees of urbanization[J]. PLoS One, 2012, 7(6): e39223. doi: 10.1371/journal.pone.0039223 [51] ZHAO Y, YANG Q E, ZHOU X, et al. Antibiotic resistome in the livestock and aquaculture industries: status and solutions[J]. Crit Rev Environ Sci Technol, 2021, 51(19): 2159-2196. doi: 10.1080/10643389.2020.1777815 [52] GREENFIELD B K, SHAKED S, MARRS C F, et al. Modeling the emergence of antibiotic resistance in the environment: an analytical solution for the minimum selection concentration[J]. Antimicrob Agents Chemother, 2018, 62(3): e1617-e1686. [53] DU J, ZHAO H X, WANG Y, et al. Presence and environmental risk assessment of selected antibiotics in coastal water adjacent to mariculture areas in the Bohai Sea[J]. Ecotox Environ Safe, 2019, 177: 117-123. doi: 10.1016/j.ecoenv.2019.03.075 [54] ZHAO B, XU J M, ZHANG G D, et al. Occurrence of antibiotics and antibiotic resistance genes in the Fuxian Lake and antibiotic source analysis based on principal component analysis-multiple linear regression model[J]. Chemosphere, 2021, 262: 127741. doi: 10.1016/j.chemosphere.2020.127741 [55] ZHANG G D, LU S Y, WANG Y Q, et al. Occurrence of antibiotics and antibiotic resistance genes and their correlations in lower Yangtze River, China[J]. Environ Pollut, 2020, 257: 113365. doi: 10.1016/j.envpol.2019.113365 [56] SHEN X X, JIN G Q, ZHAO Y J, et al. Prevalence and distribution analysis of antibiotic resistance genes in a large-scale aquaculture environment[J]. Sci Total Environ, 2020, 711: 134626. doi: 10.1016/j.scitotenv.2019.134626 [57] ZHENG J, ZHOU Z C, WEI Y Y, et al. High-throughput profiling of seasonal variations of antibiotic resistance gene transport in a peri-urban river[J]. Environ Int, 2018, 114: 87-94. doi: 10.1016/j.envint.2018.02.039 [58] MARTI E, HUERTA B, RODRÍGUEZ-MOZAZA S, et al. Abundance of antibiotic resistance genes and bacterial community composition in wild freshwater fish species[J]. Chemosphere, 2018, 196: 115-119. doi: 10.1016/j.chemosphere.2017.12.108 [59] SU H C, LIU Y S, PAN C G, et al. Persistence of antibiotic resistance genes and bacterial community changes in drinking water treatment system: from drinking water source to tap water[J]. Sci Total Environ, 2017, 616-617: 453-461. [60] THOMPSON J R, PACOCHA S, PHARINO C, et al. Genotypic diversity within a natural coastal bacterioplankton population[J]. Science, 2005, 307(5713): 1311-1313. doi: 10.1126/science.1106028 [61] LU Z H, NA G S, GAO H, et al. Fate of sulfonamide resistance genes in estuary environment and effect of anthropogenic activities[J]. Sci Total Environ, 2015, 527-528: 429-438. doi: 10.1016/j.scitotenv.2015.04.101 [62] SU H C, PAN C G, YING G G, et al. Contamination profiles of antibiotic resistance genes in the sediments at a catchment scale[J]. Sci Total Environ, 2014, 490: 708-714. doi: 10.1016/j.scitotenv.2014.05.060 [63] JECHALKE S, BROSZAT M, LANG F, et al. Effects of 100 years wastewater irrigation on resistance genes, Class 1 integrons and IncP-1 plasmids in Mexican soil[J]. Front Microbiol, 2015, 6: 163. [64] 苏志国, 张衍, 代天娇, 等. 环境中抗生素抗性基因与Ⅰ型整合子的研究进展[J]. 微生物学通报, 2018, 45(10): 2217-2233. [65] QIU W H, SUN J, FANG M J, et al. Occurrence of antibiotics in the main rivers of Shenzhen, China: association with antibiotic resistance genes and microbial community[J]. Sci Total Environ, 2019, 635: 334-341. [66] JIANG X S, LIU L Q, CHEN J F, et al. Antibiotic resistance genes and mobile genetic elements in a rural river in Southeast China: occurrence, seasonal variation and association with the antibiotics[J]. Sci Total Environ, 2021, 778: 146131. doi: 10.1016/j.scitotenv.2021.146131 [67] WANG Z, HAN M Z, LI E H, et al. Distribution of antibiotic resistance genes in an agriculturally disturbed lake in China: their links with microbial communities, antibiotics, and water quality[J]. J Hazard Mater, 2020, 393: 122426. doi: 10.1016/j.jhazmat.2020.122426 [68] XIANG S Z, WANG X S, MA W, et al. Response of microbial communities of karst river water to antibiotics and microbial source tracking for antibiotics[J]. Sci Total Environ, 2020, 706: 135730. doi: 10.1016/j.scitotenv.2019.135730 [69] CROFTS T S, GASPARRINI A J, DANTAS G. Next-generation approaches to understand and combat the antibiotic resistome[J]. Nat Rev Microbiol, 2017, 15: 422-434. doi: 10.1038/nrmicro.2017.28 [70] SONG C, ZHANG C, FAN L M, et al. Occurrence of antibiotics and their impacts to primary productivity in fishponds around Tai Lake, China[J]. Chemosphere, 2016, 161: 127-135. doi: 10.1016/j.chemosphere.2016.07.009 [71] LI N, ZHANG X B, WU W, et al. Occurrence, seasonal variation and risk assessment of antibiotics in the reservoirs in North China[J]. Chemosphere, 2014, 111: 327-335. doi: 10.1016/j.chemosphere.2014.03.129 [72] XU L Y, ZHANG H, XIONG P, et al. Occurrence, fate, and risk assessment of typical tetracycline antibiotics in the aquatic environment: a review[J]. Sci Total Environ, 2020, 753: 141975. [73] HE S X, ZHOU Z G, LIU Y C, et al. Do dietary betaine and the antibiotic florfenicol influence the intestinal autochthonous bacterial community in hybrid tilapia (Oreochromis niloticus ♀ × O. aureus ♂)?[J]. World J Microb Biot, 2012, 28(3): 785-791. doi: 10.1007/s11274-011-0871-7 [74] BINH V N, DANG N, ANH N T K, et al. Antibiotics in the aquatic environment of Vietnam: Sources, concentrations, risk and control strategy[J]. Chemosphere, 2018, 197: 438-450. doi: 10.1016/j.chemosphere.2018.01.061 [75] LIU X, STEELE J C, MENG X Z. Usage, residue, and human health risk of antibiotics in Chinese aquaculture: a review[J]. Environ Pollut, 2017, 223: 161-169. doi: 10.1016/j.envpol.2017.01.003 [76] CHEN Y H, SU J Q, ZHANG J Y, et al. High-throughput profiling of antibiotic resistance gene dynamic in a drinking water river-reservoir system[J]. Water Res, 2019, 149: 179-189. doi: 10.1016/j.watres.2018.11.007 [77] XU Y, GUO C S, LUO Y, et al. Occurrence and distribution of antibiotics, antibiotic resistance genes in the urban rivers in Beijing, China[J]. Environ Pollut, 2016, 213: 833-840. doi: 10.1016/j.envpol.2016.03.054 [78] NIU Z G, ZHANG K, ZHANG Y. Occurrence and distribution of antibiotic resistance genes in the coastal area of the Bohai Bay, China[J]. Mar Pollut Bull, 2016, 107: 245-250. doi: 10.1016/j.marpolbul.2016.03.064 [79] ZHANG S Q, ABBAS M, REHMAN M U, et al. Dissemination of antibiotic resistance genes (ARGs) via integrons in Escherichia coli: a risk to human health[J]. Environ Pollut, 2020, 266: 115260. doi: 10.1016/j.envpol.2020.115260 [80] ZHAO W X, WANG B, YU G. Antibiotic resistance genes in China: occurrence, risk, and correlation among different parameters[J]. Environ Sci Pollut R, 2018, 25: 21467-21482. doi: 10.1007/s11356-018-2507-z [81] ORGANIZATION W H. Antimicrobial resistance: global report on surveillance. [J]. 2014, 7(4): 695-704. [82] ALEXANDRA T, LARISA I, ALEJANDRO H B, et al. Antimicrobial resistance genes in marine bacteria and human uropathogenic Escherichia coli from a region of intensive aquaculture[J]. Env Microbbiol Rep, 2015, 7(5): 803-809. doi: 10.1111/1758-2229.12327 [83] SYROVA E, KOHOUTOVA L, DOLEJSKA M, et al. Antibiotic resistance and virulence factors in mesophilic Aeromonas spp. from Czech carp fisheries[J]. J Appl Microbiol, 2018, 125(6): 1702-1713. doi: 10.1111/jam.14075 [84] LEE K, KIM D, LEE D, et al. Mobile resistome of human gut and pathogen drives anthropogenic bloom of antibiotic resistance[J]. Microbiome, 2020, 8: 2. doi: 10.1186/s40168-019-0774-7 [85] NNADOZIE C F, ODUME O N. Freshwater environments as reservoirs of antibiotic resistant bacteria and their role in the dissemination of antibiotic resistance genes[J]. Environ Pollut, 2019, 254: 113067. doi: 10.1016/j.envpol.2019.113067 [86] ALEXANDER J, BOLLMANN A, SEITZ W, et al. Microbiological characterization of aquatic microbiomes targeting taxonomical marker genes and antibiotic resistance genes of opportunistic bacteria[J]. Sci Total Environ, 2015, 512-513: 316-325. doi: 10.1016/j.scitotenv.2015.01.046 [87] AARTS H, MARGOLLES A. Antibiotic resistance genes in food and gut (non-pathogenic) bacteria. Bad genes in good bugs[J]. Front Microbiol, 2015, 5: 754. [88] SU H C, YING G G, TAO R, et al. Occurrence of antibiotic resistance and characterization of resistance genes and integrons in Enterobacteriaceae isolated from integrated fish farms in south China[J]. J Environ Monit, 2011, 13(11): 3229-3236. doi: 10.1039/c1em10634a [89] TRANG D T, HIEN B T T, MØLBAK K, et al. Epidemiology and aetiology of diarrhoeal diseases in adults engaged in wastewater-fed agriculture and aquaculture in Hanoi, Vietnam[J]. Trop Med Int Health, 2007, 2: 23-33. [90] AMARASIRI M, SANO D, SUZUKI S. Understanding human health risks caused by antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARG) in water environments: current knowledge and questions to be answered[J]. Crit Rev Environ Sci Technol, 2020, 50(19): 2016-2059. doi: 10.1080/10643389.2019.1692611 [91] KLASE G, LEE S, LIANG S, et al. The microbiome and antibiotic resistance in integrated fishfarm water: implications of environmental public health[J]. Sci Total Environ, 2019, 649: 1491-1501. doi: 10.1016/j.scitotenv.2018.08.288 [92] SHARON L. Reduced antibiotic use in livestock: how Denmark tackled resistance.[J]. Environ Health Perspect, 2014, 122(6): 160-165. [93] ANDERSSON D I, HUGHES D. Antibiotic resistance and its cost: is it possible to reverse resistance?[J]. Nat Rev Microbiol, 2010, 8: 260-271. doi: 10.1038/nrmicro2319 [94] GAGGÌA F, MATTARELLI P, BIAVATI B. Probiotics and prebiotics in animal feeding for safe food production[J]. Int J Food Microbiol, 2010, 141: S15-S28. doi: 10.1016/j.ijfoodmicro.2010.02.031 [95] LI Z, HU Y H, YANG Y Y, et al. Antimicrobial resistance in livestock: antimicrobial peptides provide a new solution for a growing challenge[J]. Anim Front, 2018, 8(2): 21-29. doi: 10.1093/af/vfy005 [96] GUO M T, YUAN Q B, YANG J. Ultraviolet reduction of erythromycin and tetracycline resistant heterotrophic bacteria and their resistance genes in municipal wastewater[J]. Chemosphere, 2013, 93(11): 2864-2868. doi: 10.1016/j.chemosphere.2013.08.068 [97] WANG B I, SHI H H, HABTESELASSIE M Y, et al. Simultaneous removal of multidrug-resistant Salmonella enterica serotype typhimurium, antibiotics and antibiotic resistance genes from water by electrooxidation on a Magnéli phase Ti4O7 anode[J]. Chem Eng J, 2020, 407: 127134. [98] HOU J, CHEN Z Y, GAO J, et al. Simultaneous removal of antibiotics and antibiotic resistance genes from pharmaceutical wastewater using the combinations of up-flow anaerobic sludge bed, anoxic-oxic tank, and advanced oxidation technologies[J]. Water Res, 2019, 159: 511-520. doi: 10.1016/j.watres.2019.05.034 [99] KAEWMANEE A, CHIEMCHAISRI W, CHIEMCHAISRI C. Influence of high doses of antibiotics on anoxic-aerobic membrane bioreactor in treating solid waste leachate[J]. Int Biodeterior Biodegradation, 2019, 138: 15-22. doi: 10.1016/j.ibiod.2018.12.011 [100] RODRÍGUEZ-CHUECA J, VARELLA DELLA GIUSTINA S, ROCHA J, et al. Assessment of full-scale tertiary wastewater treatment by UV-C based-AOPs: removal or persistence of antibiotics and antibiotic resistance genes?[J]. Sci Total Environ, 2019, 652: 1051-1061. doi: 10.1016/j.scitotenv.2018.10.223 [101] BAO J F, WANG X J, GU J, et al. Effects of macroporous adsorption resin on antibiotic resistance genes and the bacterial community during composting[J]. Bioresour Technol, 2020, 295: 121997. doi: 10.1016/j.biortech.2019.121997 [102] WANG H C, WANG J, LI S M, et al. Synergistic effect of UV/chlorine in bacterial inactivation, resistance gene removal, and gene conjugative transfer blocking[J]. Water Res, 2020, 185: 116290. doi: 10.1016/j.watres.2020.116290 [103] WU Y Q, CHEN Z Q, WEN Q X, et al. Mechanism concerning the occurrence and removal of antibiotic resistance genes in composting product with ozone post-treatment[J]. Bioresour Technol, 2021, 321: 124433. doi: 10.1016/j.biortech.2020.124433 [104] NI B J, YAN X F, DAI X H, et al. Ferrate effectively removes antibiotic resistance genes from wastewater through combined effect of microbial DNA damage and coagulation[J]. Water Res, 2020, 185: 116273. doi: 10.1016/j.watres.2020.116273 [105] XU L K, CAMPOS L C, CANALES M, et al. Drinking water biofiltration: behaviour of antibiotic resistance genes and the association with bacterial community[J]. Water Res, 2020, 182: 115954. doi: 10.1016/j.watres.2020.115954 [106] MA J W, CUI Y B, LI A M, et al. Evaluation of the fate of nutrients, antibiotics, and antibiotic resistance genes in sludge treatment wetlands[J]. Sci Total Environ, 2020, 712: 136370. doi: 10.1016/j.scitotenv.2019.136370 [107] SHAO Y T, WANG Y P, YUAN Y W, et al. A systematic review on antibiotics misuse in livestock and aquaculture and regulation implications in China[J]. Sci Total Environ, 2021, 798: 149205. doi: 10.1016/j.scitotenv.2021.149205 -
计量
- 文章访问数: 147
- 被引次数: 0