留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一株来自水库底泥的溶藻菌G2溶藻特性研究

袁轲婷 任大钧 万琼 柴蓓蓓 康爱卿 雷晓辉 陈彬 陈翔

袁轲婷, 任大钧, 万琼, 柴蓓蓓, 康爱卿, 雷晓辉, 陈彬, 陈翔. 一株来自水库底泥的溶藻菌G2溶藻特性研究[J]. 南方水产科学. doi: 10.12131/20210187
引用本文: 袁轲婷, 任大钧, 万琼, 柴蓓蓓, 康爱卿, 雷晓辉, 陈彬, 陈翔. 一株来自水库底泥的溶藻菌G2溶藻特性研究[J]. 南方水产科学. doi: 10.12131/20210187
YUAN Keting, REN Dajun, WAN Qiong, CHAI Beibei, KANG Aiqing, LEI Xiaohui, CHEN Bin, Chen Xiang. Algae-lysing characteristics of an algicidal bacterium G2 from reservoir sediment[J]. South China Fisheries Science. doi: 10.12131/20210187
Citation: YUAN Keting, REN Dajun, WAN Qiong, CHAI Beibei, KANG Aiqing, LEI Xiaohui, CHEN Bin, Chen Xiang. Algae-lysing characteristics of an algicidal bacterium G2 from reservoir sediment[J]. South China Fisheries Science. doi: 10.12131/20210187

一株来自水库底泥的溶藻菌G2溶藻特性研究

doi: 10.12131/20210187
基金项目: 国家自然科学基金青年基金项目 (51809283);河北省自然科学基金创新研究群体 (E2020402074);河北省自然科学基金项目 (E2020402044);中国长江三峡集团有限公司科研项目 (202003136)
详细信息
    作者简介:

    袁轲婷 (1996—),女,硕士研究生,研究方向为水体环境修复。E-mail: yuank835@gmail.com

    通讯作者:

    柴蓓蓓 (1982—),女,副教授,博士,从事水环境修复研究。E-mail: cbb21@163.com

  • 中图分类号: X 524

Algae-lysing characteristics of an algicidal bacterium G2 from reservoir sediment

  • 摘要: 铜绿微囊藻 (Microcystis aeruginosa) 可引起藻类水华,其大量繁殖会对水体环境造成严重威胁。微生物除藻技术具有良好的应用前景。从陕西省西安市某水库的底泥中分离出一株对铜绿微囊藻具有溶解作用的菌株G2,经16S rDNA序列分析鉴定为纤维弧菌属 (Cellvibrio sp.),GenBank登录号为MW221316,并对G2溶解铜绿微囊藻的可行性进行了研究。结果表明,G2通过分泌胞外物质间接溶藻,稳定期的G2对藻类去除效果最佳;提高G2的投加比例 (>10%) 有助于提升溶藻效果;G2对温度的变化较敏感,5和25 ℃时除藻率分别可达 (59.42±0.88)%和 (63.10±1.42)%,温度高于75 ℃除藻效果不佳;pH和光照对除藻效果影响不显著,G2具有对酸碱耐受能力强 (pH 3~11) 的特点。综上,G2能有效地抑制铜绿微囊藻繁殖,可作为一种潜在的控制有害藻华的生物制剂。
  • 图  1  菌株G2的菌落

    Figure  1.  Colony of Strain G2

    图  2  基于16S rDNA基因序列构建的菌株G2系统发育树

    Figure  2.  Constructed phylogenetic tree of Strain G2 based on 16S rDNA gene sequence

    图  3  溶藻菌G2生长曲线

    Figure  3.  Growth curve of Strain G2

    图  4  菌株G2的溶藻方式

    Figure  4.  Algicidal mode of Strain G2

    图  5  不同生长期下菌株G2的溶藻效果

    Figure  5.  Algicidal effect of Strain G2 at different growth stages

    图  6  不同投加比例下菌株G2的溶藻效果

    Figure  6.  Algicidal effect of Strain G2 with different proportions

    图  7  不同pH下菌株G2的溶藻效果

    Figure  7.  Algicidal effect of Strain G2 with different pH

    图  8  不同温度下菌株G2的溶藻效果

    Figure  8.  Algicidal effect of Strain G2 at different temperatures

    图  9  不同光照下菌株G2的溶藻效果

    Figure  9.  Algicidal effect of Strain G2 under different light conditions

  • [1] XU D L, CAI Y, JIANG H, et al. Variations of food web structure and energy availability of shallow lake with long-term eutrophication: a case study from Lake Taihu, China[J]. Clean-Soil Air Water, 2016, 44(10): 1306-1314. doi: 10.1002/clen.201300837
    [2] 朱广伟, 许海, 朱梦圆, 等. 三十年来长江中下游湖泊富营养化状况变迁及其影响因素[J]. 湖泊科学, 2019, 31(6): 1510-1524. doi: 10.18307/2019.0622
    [3] 杨正健, 俞焰, 陈钊, 等. 三峡水库支流库湾水体富营养化及水华机理研究进展[J]. 武汉大学学报 (工学版), 2017, 50(4): 507-516.
    [4] MOHAMED M N, WELLEN C, PARSONS C T, et al. Understanding and managing the re-eutrophication of Lake Erie: knowledge gaps and research priorities[J]. Freshw Sci, 2019, 38(4): 675-691. doi: 10.1086/705915
    [5] 中华人民共和国生态环境部. 2020中国环境生态环境质量简况[OL]. (2021-03-02). http://www.mee.gov.cn/xxgk2018/xxgk/xxgk15/202103/t20210302_823100.html.
    [6] KHAIRY H, EL-SHEEKH M. Toxicological studies on microcystin produced by Microcystis aeruginosa: assessment and management[J]. Egypt J Bot, 2019, 59(3): 551-566.
    [7] DENG J M, QIN B Q, SARVALA J K, et al. Phytoplankton assemblages respond differently to climate warming and eutrophication: a case study from Pyhäjärvi and Taihu[J]. J Gt Lakes Res, 2016, 42(2): 386-396. doi: 10.1016/j.jglr.2015.12.008
    [8] STEFFEN M M, DAVIS T W, MCKAY R M L, et al. Ecophysiological examination of the Lake Erie Microcystis bloom in 2014: linkages between biology and the water supply shutdown of Toledo, OH[J]. Environ Sci Technol, 2017, 51(12): 6745-6755. doi: 10.1021/acs.est.7b00856
    [9] FAN G D, LIU D M, ZHU G C, et al. Influence factors in kinetics during removal of harmful algae by ultrasonic irradiation process[J]. Desalin Water Treat, 2014, 52(37/38/39): 7317-7322.
    [10] LIN J L, HUA L C, HUNG S K, et al. Algal removal from cyanobacteria-rich waters by preoxidation-assisted coagulation-flotation: effect of algogenic organic matter release on algal removal and trihalomethane formation[J]. J Environ Sci, 2018, 63(1): 147-155.
    [11] SAMARASINGHE N, FERNANDO S, LACEY R, et al. Algal cell rupture using high pressure homogenization as a prelude to oil extraction[J]. Renew Energ, 2012, 48: 300-308. doi: 10.1016/j.renene.2012.04.039
    [12] 景二丹, 许小燕, 李丛宇, 等. 阳澄湖水源水中藻类的去除研究[J]. 中国给水排水, 2019, 35(13): 43-46.
    [13] MARŠÁLEK B, ZEZULKA Š, MARŠÁLKOVÁ E, et al. Synergistic effects of trace concentrations of hydrogen peroxide used in a novel hydrodynamic cavitation device allows for selective removal of cyanobacteria[J]. Chem Eng J, 2020, 382: 122383. doi: 10.1016/j.cej.2019.122383
    [14] WANG M, CHEN S B, ZHOU W G, et al. Algal cell lysis by bacteria: a review and comparison to conventional methods[J]. Algal Res, 2020, 46: 101794. doi: 10.1016/j.algal.2020.101794
    [15] LIU J Y, YANG C Y, CHI Y X, et al. Algicidal characterization and mechanism of Bacillus licheniformis Sp34 against Microcystis aeruginosa in Dianchi Lake[J]. J Basic Microbiol, 2019, 59(11): 1112-1124. doi: 10.1002/jobm.201900112
    [16] ZHU B W, HUANG L S, TAN H D, et al. Characterization of a new endo-type polyM-specific alginate lyase from Pseudomonas sp.[J]. Biotechnol Lett, 2015, 37(2): 409-415. doi: 10.1007/s10529-014-1685-0
    [17] SCHWENK D, NOHYNEK L, RISCHER H. Algae-bacteria association inferred by 16S rDNA similarity in established microalgae cultures[J]. MicrobiologyOpen, 2014, 3(3): 356-368. doi: 10.1002/mbo3.175
    [18] CHEN Z R, ZHENG W, YANG L X, et al. Lytic and chemotactic features of the plaque-forming bacterium KD531 on Phaeodactylum tricornutum[J]. Front Microbiol, 2017, 8: 2581. doi: 10.3389/fmicb.2017.02581
    [19] BARBEYRON T, ZONTA E, le PANSE S L, et al. Alteromonas fortis sp. nov., a non-flagellated bacterium specialized in the degradation of iota-carrageenan, and emended description of the genus Alteromonas[J]. Int J Syst Evol Microbiol, 2019, 69(8): 2514-2521. doi: 10.1099/ijsem.0.003533
    [20] SUN H Y, ZHANG Y, CHEN H R, et al. Isolation and characterization of the marine algicidal bacterium Pseudoalteromonas S1 against the harmful alga Akashiwo sanguinea[J]. Mar Biol, 2016, 163(3): 1-8.
    [21] SUN P F, ZHAO J Y, TANG J, et al. Algicidal activity recovery by a Li-doped up-conversion material converting visible light into UV[J]. Sci Total Environ, 2020, 720(1): 137596. doi: 10.1016/j.scitotenv.2020.137596
    [22] CHI W J, SEO J W, HONG S K. Characterization of two thermostable β-agarases from a newly isolated marine agarolytic bacterium, Vibrio sp. S1[J]. Biotechnol Bioprocess Eng, 2019, 24(5): 799-809. doi: 10.1007/s12257-019-0180-9
    [23] YU S, YUN E J, DONG H K, et al. Molecular and enzymatic verification of the dual agarolytic pathways in a marine bacterium, Vibrio sp. strain EJY3: molecular and enzymatic verification[J]. Appl Environ Microbiol, 2020, 86(6): e02724-19. doi: 10.1128/AEM.02724-19
    [24] LIN Z H, CHEN B B, ZHAO L. Fluorescence-based bioassays with dose-response curve and relative potency in measuring algicidal virulence of Bacillus sp. B1 exudates against Heterosigma akashiwo[J]. Sci Total Environ, 2020, 724: 137691. doi: 10.1016/j.scitotenv.2020.137691
    [25] 国家环境保护总局. 水和废水监测分析方法第4版[M]. 北京: 中国环境科学出版社, 2002: 670-671.
    [26] IMAI I, ITO H, ODA T, et al. Isolation and characterization of algicidal bacteria and its effect on a musty odor-producing cyanobacterium Dolichospermum crassum in a reservoir[J]. Water Supply, 2017, 17(3): 792-798. doi: 10.2166/ws.2016.179
    [27] ZHANG S Y, FAN C, XIA Y S, et al. Characterization of a novel bacteriophage specific to Exiguobacterium indicum isolated from a plateau eutrophic lake[J]. J Basic Microbiol, 2019, 59(2): 206-214. doi: 10.1002/jobm.201800184
    [28] 王琪, SIMON P, 刘锦钰, 等. 滇池中溶藻细菌的分离鉴定及其溶藻效应[J]. 微生物学通报, 2018, 45(12): 2614-2623.
    [29] LI Y, LEI X Q, ZHU H, et al. Chitinase producing bacteria with direct algicidal activity on marine diatoms[J]. Sci Rep, 2016, 6(1): 21984. doi: 10.1038/srep21984
    [30] NISHU S D, KANG Y, HAN I, et al. Nutritional status regulates algicidal activity of Aeromonas sp. L23 against cyanobacteria and green algae[J]. PLOS ONE, 2019, 14(3): e0213370. doi: 10.1371/journal.pone.0213370
    [31] YOU D S, LEE Y W, CHOI D, et al. Algicidal effects of thiazolinedione derivatives against Microcystis aeruginosa [J]. Kor J Chem Eng, 34(1): 139-149.
    [32] 石新国, 李悦, 郑文煌, 等. 一株中肋骨条藻特异溶藻菌的分离鉴定及溶藻特性[J]. 微生物学通报, 2020, 47(11): 3527-3538.
    [33] WANG Y F, COYNE K J. Immobilization of algicidal bacterium Shewanella sp. IRI-160 and its application to control harmful dinoflagellates[J]. Harmful Algae, 2020, 94: 101798. doi: 10.1016/j.hal.2020.101798
    [34] GUAN C W, GUO X Y, CAI G J, et al. Novel algicidal evidence of a bacterium Bacillus sp. LP-10 killing Phaeocystis globosa, a harmful algal bloom causing species[J]. Biol Control, 2014, 76: 79-86. doi: 10.1016/j.biocontrol.2014.05.007
    [35] KONG Y, WANG Q, CHEN Y J, et al. Anticyanobacterial process and action mechanism of Streptomyces sp. HJC-D1 on Microcystis aeruginosa[J]. Environ Prog Sustain Energy, 2020, 39(4): 13392. doi: 10.1002/ep.13392
    [36] AL-HAKIMI A A, ALMINDEREJ F, NOMAN E. Optimizing of Microcystis aeruginosa inactivation in freshwater using algicidal Bacillus subtilis by central composite design[J]. Desalin Water Treat, 2020, 181: 228-38. doi: 10.5004/dwt.2020.25117
    [37] ZHANG B Z, CAI G J, WANG H T, et al. Streptomyces alboflavus RPS and its novel and high algicidal activity against harmful algal bloom species Phaeocystis globosa[J]. PLOS ONE, 2014, 9(3): e92907. doi: 10.1371/journal.pone.0092907
    [38] YU Y, ZENG Y, LI J, et al. An algicidal streptomyces amritsarensis strain against Microcystis aeruginosa strongly inhibits microcystin synthesis simultaneously[J]. Sci Total Environ, 2019, 650: 34-43. doi: 10.1016/j.scitotenv.2018.08.433
    [39] ZHANG C C, MASSEY I Y, LIU Y, et al. Identification and characterization of a novel indigenous algicidal bacterium Chryseobacterium species against Microcystis aeruginosa[J]. J Toxicol Env Health A, 2019, 82(15): 845-853. doi: 10.1080/15287394.2019.1660466
    [40] 杨冰洁, 向文洲, 金雪洁, 等. 一株溶藻菌CBA02的分离鉴定及溶藻特性研究[J]. 生物技术通报, 2020, 36(11): 60-67.
  • 加载中
图(9)
计量
  • 文章访问数:  64
  • HTML全文浏览量:  14
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-29
  • 修回日期:  2021-08-02
  • 录用日期:  2021-09-14
  • 网络出版日期:  2022-03-30

目录

    /

    返回文章
    返回