Metabonomics analysis of ovaries of Coilia nasus in seawater and freshwater based on liquid chromatography-mass spectrometry
-
摘要: 为探究海、淡水养殖环境对刀鲚 (Coilia nasus) 卵巢发育的影响,采用非靶向代谢组学的方法,测定了海、淡水环境下刀鲚卵巢中代谢产物的差异情况,并与基因组百科全书 (KEGG) 数据库进行比对,找出相对应的代谢通路并分析其原因。结果表明,海水组和淡水组样品共鉴定出47种差异代谢物 (P<0.05、FC>1、VIP>1),与海水组相比,淡水组表达差异倍数最明显的为碳环血氧烷A2 (Carbocyclic thromboxane A2)、半乳糖神经酰胺(Galactosyl ceramide),差异倍数分别为10.40、2.78倍;与海水组相比,淡水组卵巢组织内皮质醇升高了1.61倍;对47种差异代谢物进行KEGG分析发现,变化显著的通路有氨酰-tRNA的生物合成和嘧啶代谢通路 (P<0.05),皮质醇、氨酰-tRNA的生物合成通路、嘧啶代谢通路和鞘磷脂代谢通路可能与刀鲚生殖洄游过程中卵巢发育有关。Abstract: In order to clarify the effects of seawater and freshwater on the ovary development of Coilia nasus, we analyzed their differences by using non-targeted metabolomics, and compared with database of KEGG directly to find out the corresponding metabolic pathways, then analyzed its causes. The results show that a total of 47 metabolites had significant difference between the two groups (P<0.05, FC>1, VIP>1). Compared with the seawater group, the most significant differences in the expression were carbocyclic thromboxane A2, Galactosylceramide, and their differences were 10.40 and 2.78 times, respectively. The cortisol in the ovarian tissue of the freshwater group increased by 1.61 times. According to the analysis on KEGG metabolic pathways of 47 different metabolites, the biosynthesis of aminoacyl-tRNA and pyridine metabolic pathways changed in the seawater and freshwater environments significantly (P<0.05). The biosynthesis pathway of cortisol, aminoyl-tRNA, pyrimidine metabolism pathway and sphingo-lipid metabolism pathway may be related to the ovarian development during the reproductive migration of C. nasus.
-
Key words:
- Coilia nasus /
- LC-MS /
- Salinity /
- Ovary /
- Metabolomics /
- Metabolic pathways
-
表 1 差异代谢物信息表
Table 1. Differential metabolites information sheet
差异代谢物
Differential metabolite分子式
Molecular formula变量投影重要度
VIPFC
Fold changeP 变化趋势
Variation trend磷脂酰肌醇 PI [20:4(5Z,8Z,11Z,14Z)/0:0] C29H49O12P 1.58 0.93 0.017 下降 谷氨酰胺色氨酸 Glutaminyltryptophan C16H20N4O4 1.05 0.96 0.018 下降 L-异亮氨酸 L-Isoleucine C6H13NO2 1.33 0.96 0.005 下降 木麻黄6-α-D-葡萄糖苷 Casuarine 6-alpha-D-glucoside C14H25NO10 1.13 0.94 0.043 下降 甘油一脂 MG(10:0/0:0/0:0) C13H26O4 3.59 0.71 0.025 下降 皮质醇 Cortisol C21H30O5 3.28 1.61 0.008 上升 碳环血氧烷A2 Carbocyclic thromboxane A2 C22H36O3 2.88 10.40 0.007 上升 (±)9-十八碳二烯酸 (±)9-HPODE C18H32O4 2.90 0.58 0.020 下降 N-棕榈酰蛋氨酸 N-palmitoyl methionine C21H41NO3S 1.86 0.75 0.022 下降 13-羟基十八酸 13-hydroxyoctadecanoic acid C18H36O3 1.95 0.86 0.005 下降 咖啡酰环戊醇 Caffeoylcycloartenol C39H56O4 2.07 0.81 0.036 下降 11,13-二十碳二烯酸 15-OxoEDE C20H34O3 2.51 0.70 0.032 下降 2,3-二氢苯并呋喃 2,3-dihydrobenzofuran C8H8O 1.19 1.08 0.033 上升 4-甲酰基吲哚 4-formyl indole C9H7NO 1.34 0.83 0.040 下降 红花素C Safflomin C C30H30O14 2.04 0.85 0.003 下降 6-[(2-羧基乙酰基)氧]-3,4,5-三羟基氧烷-2-羧酸
6-[(2-carboxyacetyl)oxy]-3,4,5-trihydroxyoxane-2-carboxylic acidC9H12O10 2.07 1.12 0.001 上升 异戊二烯 Isoputreanine C7H16N2O2 2.33 0.84 0.001 下降 脯氨酸 L-Proline C5H9NO2 1.80 0.91 0.003 下降 羟脯氨酸 Hydroxyprolyl-hydroxyproline C10H16N2O5 3.13 0.72 0.007 下降 5-O-阿魏酰黑精 5-O-Feruloylnigrumin C21H25NO10 1.0 0.95 0.037 下降 壬二酸 Azelaic acid C9H16O4 1.12 0.96 0.012 下降 尿苷 Uridine C9H12N2O6 1.35 0.95 0.001 下降 视黄酯 Retinyl ester C20H30O2 1.24 0.96 0.004 下降 顺-9,10-环氧硬脂酸 cis-9,10-Epoxystearic acid C18H34O3 1.66 0.92 0.025 下降 异柠檬酸盐 Isocitrate C6H8O7 1.55 1.12 0.047 上升 戊二酸 Glutaric acid C5H8O4 2.53 1.38 0.015 上升 6-脱氧噬菌体胺 (6-脱氧花青) 6-Deoxyfagomine C6H13NO2 1.36 0.94 0.012 下降 乙酰-L-酪氨酸 Acetyl-L-tyrosine C11H13NO4 1.38 0.87 0.010 下降 γ-谷氨酰鸟氨酸 Gamma glutamyl ornithine C10H19N3O5 1.87 1.58 0.023 上升 对茴香酸异戊酯 (异戊基异茴香酸酯) Isoamyl p-anisate C13H18O3 1.76 0.67 0.041 下降 3-氧十二酸 3-Oxododecanoic acid C12H22O3 1.01 0.92 0.043 下降 C-2神经酰胺 C-2 Ceramide C20H39NO3 2.21 0.75 0.028 下降 磷脂酰乙醇胺 PE(15:0/16:1(9Z)) C36H70NO8P 1.42 1.10 0.030 上升 半乳糖神经酰胺 Galactosyl ceramide (d18:1/14:0) C38H73NO8 1.97 2.78 0.045 上升 N-棕榈酰甘氨酸 N-Palmitoyl glycine C18H35NO3 1.97 0.86 0.000 下降 二十碳五烯酸 Eicosapentaenoic acid C20H30O2 1.01 0.98 0.004 下降 溶血磷脂酰乙醇胺 LysoPE(0:0/20:2(11Z,14Z)) C25H48NO7P 1.33 1.12 0.037 上升 9-羟基癸酸 9-Hydroxydecanoic acid C10H20O3 1.21 0.92 0.028 下降 甘油一脂 MG(a-13:0/0:0/0:0)[rac] C16H32O4 1.92 0.79 0.040 下降 反式-2-十二碳烯二酸 Traumatic acid C12H20O4 1.37 0.86 0.025 下降 9-氧壬酸 9-Oxo-nonanoic acid C9H16O3 1.15 0.93 0.019 下降 8-羟基-5,6-辛二烯酸 8-Hydroxy-5,6-octadienoic acid C8H12O3 1.04 0.94 0.016 下降 (S)-3-磺酸盐 (S)-3-Sulfonatolactate C3H6O6S 2.57 3.05 0.046 上升 γ-谷氨酰缬氨酸 gamma-Glutamylvaline C10H18N2O5 1.80 0.87 0.008 下降 穗花牡荆苷 Agnuside C22H26O11 1.41 0.91 0.005 下降 假尿苷 Pseudouridine C9H12N2O6 1.19 0.93 0.003 下降 雌三醇7-(6-反式-对-香豆酰基葡萄糖苷)
Eriodictyol 7-(6-trans-p-coumaroylglucoside)C30H28O13 1.44 0.92 0.020 下降 注:FC表示某差异代谢物在淡水组相对于海水组的表达倍数变化,FC>1表示该代谢物上调,FC<1表示该代谢物下调;P<0.05表示差异显著,P<0.01表示差异极显著。 Note: FC value indicates the change of expression multiple of a differential metabolite in FOV group compared with SOV group. FC>1 indicates that the metabolite is upregulated; FC<1 indicates that the metabolite is down-regulated. P<0.05 indicates significant difference, and P<0.01 indicates extremely significant difference. 表 2 差异代谢产物的KEGG通路富集表
Table 2. KEGG pathway enrichment table of differential metabolites
富集的差异代谢产物名称
Enriched differential metabolite name富集个数
Numble富集通路
ID Pathway通路描述
Pathway desciptionP 半乳糖神经酰胺 Galactosyl ceramide (d18:1/14:0) 1 map00600 鞘脂代谢 0.059 脯氨酸 L-Proline 1 map00330 精氨酸和脯氨酸代谢 0.176 异柠檬酸盐 Isocitrate 1 map00020 柠檬酸循环 0.057 戊二酸 Glutaric acid 1 map00310 赖氨酸降解 0.130 皮质醇 Cortisol 1 map00140 类固醇激素生物合成 0.207 尿苷 Uridine;假尿苷 Pseudo uridine 2 map00240 嘧啶代谢 0.011 异柠檬酸盐 Isocitrate 1 map00630 乙醛酸和二羧酸代谢 0.137 L-异亮氨酸 L-Isoleucine;脯氨酸 L-Proline 2 map00970 氨酰tRNA生物合成 0.008 L-异亮氨酸 L-Isoleucine 1 map00290 缬氨酸、亮氨酸和异亮氨酸生物合成 0.064 二十碳五烯酸 Eicosapentaenoic acid 1 map01040 不饱和脂肪酸生物合成 0.097 L-异亮氨酸 L-Isoleucine 1 map00280 缬氨酸、亮氨酸和异亮氨酸降解 0.107 (S)-3-磺酸盐 (S)-3-Sulfonatolactate 1 map00270 半膀氨酸和蛋氨酸代谢 0.141 -
[1] SU M, DUAN Z, SHI H, et al. The effects of salinity on reproductive development and egg and larvae survival in the spotted scat Scatophagus argus under controlled conditions[J]. Aquac Res, 2019, 50(7): 1782-1794. doi: 10.1111/are.14056 [2] MOHANTY B, GUPTA K, BABU G, et al. Exposure to salinity stress cause ovarian disruption in a stenohaline freshwater teleost, Heteropneustes fossilis (Bloch, 1794)[J]. Aquac Res, 2020, 51(5): 1964-1972. doi: 10.1111/are.14548 [3] PHAM H Q, KJØRSVIK E, NGUYEN A T, et al. Reproductive cycle in female Waigieu seaperch (Psammoperca waigiensis) reared under different salinity levels and the effects of dopamine antagonist on steroid hormone levels[J]. J Exp Mar Biol Ecol, 2010, 383(2): 137-145. doi: 10.1016/j.jembe.2009.12.010 [4] PHAM H Q, NGUYEN A T, KJØRSVIK E, et al. Seasonal reproductive cycle of Waigieu seaperch (Psammoperca waigiensis)[J]. Aquac Res, 2012, 43(6): 815-830. doi: 10.1111/j.1365-2109.2011.02894.x [5] 牛景彦, 刘占才. 影响鱼类性腺发育的生态因素研究[J]. 农业与技术, 2016, 36(16): 109. [6] 杜学芳. 盐度对凡纳滨对虾繁殖及家系生长、存活的影响[D]. 上海: 上海海洋大学, 2013: 9-17. [7] 吴旭干, 赵亚婷, 何杰, 等. 低盐度海水和淡水对中华绒螯蟹性腺发育及交配行为的影响[J]. 动物学杂志, 2013, 48(4): 555-561. [8] 吴建辉, 王家启, 戴小杰, 等. 基于概率模型的长江口鱼类空间共现模式分析[J]. 南方水产科学, 2019, 15(1): 1-9. doi: 10.12131/20180112 [9] ZHU G L, WANG L J, TANG W Q, et al. Identification of olfactory receptor genes in the Japanese grenadier anchovy Coilia nasus[J]. Genes Genomics, 2017, 39(5): 521-532. doi: 10.1007/s13258-017-0517-8 [10] DUAN J R, ZHOU Y F, XU D P, et al. Ovary transcriptome profiling of Coilia nasus during spawning migration stages by Illumina sequencing[J]. Mar Genomics, 2015, 21: 17-19. [11] LI W X, ZOU H, WU S G, et al. Richness and diversity of helminth communities in the JapaneseI grenadier anchovy, Coilia nasus, during its anadromous migration in the Yangtze River, China[J]. J Parasitol, 2012, 98(3): 449-452. doi: 10.1645/GE-2983.1 [12] LI W X, SONG R, WU S G, et al. Seasonal occurrence of helminths in the anadromous fish Coilia nasus (Engraulidae): parasite indecators of fish migratory movements[J]. J Parasitol, 2011, 97(2): 192-196. doi: 10.1645/GE-2621.1 [13] ZHANG H, WU G, XIE P, et al. Role of body size and temporal hydrology in the dietary shifts of shortjaw tapertail anchovy Coi-lia brachygnathus (Actinopterygii, Engraulidae) in a large floodplain lake[J]. Hydrobiologia, 2013, 703(1): 247-256. doi: 10.1007/s10750-012-1370-z [14] 代培, 严燕, 朱孝彦, 等. 长江刀鲚国家级水产种质资源保护区(安庆段)刀鲚资源现状[J]. 中国水产科学, 2020, 27(11): 1267-1276. [15] SHEN H, GU R, XU G, et al. In-depth transcriptome analysis of Coilia ectenes, an important fish resource in the Yangtze River: de novo assembly, gene annotation[J]. Mar Genomics, 2015, 23: 15-17. doi: 10.1016/j.margen.2015.03.002 [16] 鲜博, 高建操, 徐钢春, 等. 盐度对刀鲚生长、抗氧化应激和渗透压调节能力的影响[J]. 海洋湖沼通报, 2020(2): 152-159. [17] 王武. 鱼类增养殖学[M]. 北京: 中国农业出版社, 2000: 193. [18] XU G, DU F, LI Y, et al. Integrated application of transcripto-mics and metabolomics yields insights into population-asynchronous ovary development in Coilia nasus[J]. Sci Rep, 2016, 6(1): 1-11. doi: 10.1038/s41598-016-0001-8 [19] YIN D, LIN D, YING C, et al. Metabolic mechanisms of Coilia nasus in the natural food intake state during migration[J]. Genomics, 2020, 112(5): 3294-3305. doi: 10.1016/j.ygeno.2020.05.027 [20] ZHAO H J, XU J K, YAN Z H, et al. Microplastics enhance the developmental toxicity of synthetic phenolic antioxidants by disturbing the thyroid function and metabolism in developing zebrafish[J]. Environ Int, 2020, 140: 105750. doi: 10.1016/j.envint.2020.105750 [21] DING J, HUANG Y, LIU S, et al. Toxicological effects of nano-and micro-polystyrene plastics on red tilapia: are larger plastic particles more harmless?[J]. J Hazard Mater, 2020, 396: 122693. doi: 10.1016/j.jhazmat.2020.122693 [22] ZHANG H, LIU Y, ZHOU L, et al. Metabonomic insights into the sperm activation mechanisms in ricefield eel (Monopterus albus)[J]. Genes, 2020, 11(11): 1259. doi: 10.3390/genes11111259 [23] HUANG Y, ZHANG Y, ZHENG J, et al. Metabolic profiles of fish nodavirus infection in vitro: RGNNV induced and exploited cellular fatty acid synthesis for virus infection[J]. Cell Microbiol, 2020, 22(9): e13216. [24] OZEN G, NOREL X. Prostanoids in the pathophysiology of human coronary artery[J]. Prostag Oth Lipid M, 2017, 133: 20-28. [25] YAN H, ZHANG M Z, WONG G, et al. Mechanisms of U46619-induced contraction in mouse intrarenal artery[J]. Clin Exp Pharmacol Physiol, 2019, 46(7): 643-651. doi: 10.1111/1440-1681.13087 [26] SMYTH E M. Thromboxane and the thromboxane receptor in cardiovascular disease[J]. Clin Lipidol, 2010, 5(2): 209-219. doi: 10.2217/clp.10.11 [27] GU W, MADRID D M D, YANG G, et al. Unaltered influenza disease outcomes in swine prophylactically treated with α-galactosylceramide[J]. Dev Comp Immunol, 2021, 114: 103843. doi: 10.1016/j.dci.2020.103843 [28] WANG T, LIU F, TIAN G, et al. Lineage/species-specific expansion of the Mx gene family in teleosts: differential expression and modulation of nine Mx genes in rainbow trout Oncorhynchus mykiss[J]. Fish Shellfish Immunol, 2019, 90: 413-430. doi: 10.1016/j.fsi.2019.04.303 [29] HOEHN K, MARIEB E N. Human anatomy & physiology[M]. San Francisco: Benjamin Cummings, 2010: 1064-1094. [30] SOPINKA N M, CAPELLE P M, SEMENIUK C A D, et al. Glucocorticoids in fish eggs: variation, interactions with the environment, and the potential to shape offspring fitness[J]. Physiol Biochem Zool, 2017, 90(1): 15-33. doi: 10.1086/689994 [31] MOUSA M A, IBRAHIM M G, KORA M F, et al. Experimental studies on the reproduction of the thin-lipped mullet, Liza ramada[J]. Egypt J Aquat Biol Fish, 2018, 22(3): 125-138. doi: 10.21608/ejabf.2018.9455 [32] CUI W, MA A, WANG X, et al. Myo-inositol enhances the low-salinity tolerance of turbot (Scophthalmus maximus) by modula-ting cortisol synthesis[J]. Biochem Biophys Res Commun, 2020, 526(4): 913-919. doi: 10.1016/j.bbrc.2020.04.004 [33] 胡静, 叶乐, 吴开畅, 等. 急性盐度胁迫对克氏双锯鱼幼鱼血浆皮质醇浓度和 Na+-K+-ATP 酶活性的影响[J]. 南方水产科学, 2016, 12(2): 116-120. doi: 10.3969/j.issn.2095-0780.2016.02.017 [34] SARAVANAN M, RAMESH M, PETKAM R, et al. Influence of environmental salinity and cortisol pretreatment on gill Na+/K+-ATPase activity and survival and growth rates in Cyprinus carpio[J]. Aquac Rep, 2018, 11: 1-7. doi: 10.1016/j.aqrep.2018.04.002 [35] KWON N H, FOX P L, KIM S. Aminoacyl-tRNA synthetases as therapeutic targets[J]. Nat Rev Drug Discov, 2019, 18(8): 629-650. doi: 10.1038/s41573-019-0026-3 [36] GOMEZ M A R, IBBA M. Aminoacyl-tRNA synthetases[J]. RNA, 2020, 26(8): 910-936. doi: 10.1261/rna.071720.119 [37] GARAVITO M F, NARVÁEZ-ORTIZ H Y, ZIMMERMANN B H. Pyrimidine metabolism: dynamic and versatile pathways in pathogens and cellular development[J]. J Genet Genomics, 2015, 42(5): 195-205. doi: 10.1016/j.jgg.2015.04.004 [38] LAVIEU G, SCARLATTI F, SALA G, et al. Regulation of autophagy by sphingosine kinase 1 and its role in cell survival during nutrient starvation[J]. J Biol Chem, 2006, 281(13): 8518-8527. doi: 10.1074/jbc.M506182200 [39] HANNUN Y A, OBEID L M. The ceramide-centric universe of lipid-mediated cell regulation: stress encounters of the lipid kind[J]. J Biol Chem, 2002, 277(29): 25847-25850. doi: 10.1074/jbc.R200008200 -