留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

褐藻寡糖对卵形鲳鲹幼鱼生长性能、血浆指标、抗氧化能力以及肠道Nf-κb信号通路表达的影响

黄健彬 迟艳 周传朋 黄小林 黄忠 虞为 荀鹏伟 吴杨 张宇 林黑着

黄健彬, 迟艳, 周传朋, 黄小林, 黄忠, 虞为, 荀鹏伟, 吴杨, 张宇, 林黑着. 褐藻寡糖对卵形鲳鲹幼鱼生长性能、血浆指标、抗氧化能力以及肠道Nf-κb信号通路表达的影响[J]. 南方水产科学. doi: 10.12131/20210161
引用本文: 黄健彬, 迟艳, 周传朋, 黄小林, 黄忠, 虞为, 荀鹏伟, 吴杨, 张宇, 林黑着. 褐藻寡糖对卵形鲳鲹幼鱼生长性能、血浆指标、抗氧化能力以及肠道Nf-κb信号通路表达的影响[J]. 南方水产科学. doi: 10.12131/20210161
HUANG Jianbin, CHI Yan, ZHOU Chuanpeng, HUANG Xiaolin, HUANG Zhong, YU Wei, XUN Pengwei, WU Yang, ZHANG Yu, LIN Heizhao. Effects of dietary alginate oligosaccharide on growth performance, plasma indexes, antioxidative capacity and expression of intestinal Nf-κb signaling pathway of juvenile Trachinotus ovatus[J]. South China Fisheries Science. doi: 10.12131/20210161
Citation: HUANG Jianbin, CHI Yan, ZHOU Chuanpeng, HUANG Xiaolin, HUANG Zhong, YU Wei, XUN Pengwei, WU Yang, ZHANG Yu, LIN Heizhao. Effects of dietary alginate oligosaccharide on growth performance, plasma indexes, antioxidative capacity and expression of intestinal Nf-κb signaling pathway of juvenile Trachinotus ovatus[J]. South China Fisheries Science. doi: 10.12131/20210161

褐藻寡糖对卵形鲳鲹幼鱼生长性能、血浆指标、抗氧化能力以及肠道Nf-κb信号通路表达的影响

doi: 10.12131/20210161
基金项目: 中国水产科学研究院中央级公益性科研院所基本科研业务费专项资金资助 (2020TD55);中国水产科学研究院南海水产研究所中央级公益性科研院所基本科研业务费专项资金资助 (2021XK02);深圳市科技计划项目 (JCYJ20180306180203889);广东省现代农业产业技术体系创新团队建设专项资金 (2019KJ143)
详细信息
    作者简介:

    黄健彬 (1994—),男,硕士研究生,研究方向为动物营养与饲料科学。E-mail: hjb15626205505@163.com

    通讯作者:

    林黑着 (1965—),男,研究员,博士,从事动物营养与饲料学研究。E-mail: linheizhao@163.com

  • 中图分类号: S963.73+9

Effects of dietary alginate oligosaccharide on growth performance, plasma indexes, antioxidative capacity and expression of intestinal Nf-κb signaling pathway of juvenile Trachinotus ovatus

  • 摘要: 该研究采用3组实验饲料养殖225尾卵形鲳鲹 (Trachinotus ovatus) 幼鱼58 d,以不添加褐藻寡糖组(TC) 作为对照,研究0.7 g·kg−1 (A1) 和6.0 g·kg−1 (A2) 褐藻寡糖对卵形鲳鲹生长、血浆生化及免疫指标、肝脏抗氧化能力、肠道形态和Nf-κb信号通路相关基因表达的影响。结果显示,A1和A2组增重率和特定生长率显著高于TC组 (P<0.05),A1组饲料系数显著低于TC组 (P<0.05);A1和A2组血浆补体C3质量浓度显著高于TC组 (P<0.05),A2组碱性磷酸酶 (AP) 活性显著高于TC组 (P<0.05);与TC组相比,A1和A2组肝脏超氧化物歧化酶 (SOD)、过氧化氢酶 (CAT)、过氧化物酶 (POD) 和谷胱甘肽还原酶 (GR) 活性和总抗氧化能力 (T-AOC) 显著升高,丙二醛 (MDA) 浓度显著降低 (P<0.05);A1和A2组肠绒毛高度显著高于TC组(P<0.05);与TC组相比,A1和A2组ikknf-κbtnf-αil-8表达量显著降低,tgf-β表达量显著上升 (P<0.05)。综上,添加褐藻寡糖可以改善卵形鲳鲹肠道形态和生长性能,提高血浆免疫指标和肝脏抗氧化能力,并降低肠道Nf-κb活性,抑制促炎细胞因子mRNA表达,建议卵形鲳鲹幼鱼饲料中褐藻寡糖的添加量为0.7 g·kg−1
  • 图  1   摄食不同浓度褐藻寡糖饲料的卵形鲳鲹幼鱼的肠道形态 (HE染色)

    Figure  1.   Intestine morphology of T. ovatus fed different levels of dietary AO (HE staining)

    图  2   卵形鲳鲹幼鱼肠道Nf-κb信号通路相关基因的相对表达量

    ikk. IkB激酶基因;ikb. κB抑制蛋白基因;nf-kb. 核因子-κB基因;tnf-α. 肿瘤坏死因子-α基因;tgf-β. 转化生长因子-β基因;il-8. 白细胞介素8基因;A1组和A2组实验鱼的ikkikbnf-kbtnf-αil-8的相对表达量显著低于TC组,tgf-β的相对表达量显著高于TC组 (P<0.05);A2组的ikbnf-kbtnf-αil-8 mRNA的相对表达量显著低于A1组 (P<0.05)。

    Figure  2.   Relative expression of genes involved in Nf-κb signaling pathway in gut of T. ovatus

    ikk. Inhibitor of nuclear factor kappa-B kinase gene; ikb. Inhibitor of nuclear factor kappa-B gene; nf-kb. Nuclear factor kappa-B gene; tnf-α. Tumor necrosis factor-α gene; tgf-β. Transforming growth factor-βgene; il-8. Interleukin-8 gene. The relative expression of ikk, ikb, nf-kb, tnf-α and il-8 gene of fish in both Group A1 and A2 are significantly lower than those of fish in Group TC, whereas the relative expression of tgf-β gene are significantly higher than Group TC (P<0.05). The relative expression of ikb, nf-kb, tnf-α and il-8 gene of fish in Group A2 is significantly lower than that of fish in Group A1 (P<0.05).

    表  1   卵形鲳鲹幼鱼实验饲料组成与近似成分

    Table  1.    Ingredients and proximate composition of experimental diets of juvenile T. ovatus g·100 g−1

    原料
    ngredient
    饲料组 Diet group
    TCA1A2
    鱼粉 Fish meal 26.00 26.00 26.00
    豆粕 Soybean meal 15.00 15.00 15.00
    花生饼 Peanut meal 12.00 12.00 12.00
    啤酒酵母 Beer yeast powder 5.00 5.00 5.00
    猪肉粉 Swine by-product meal 4.00 4.00 4.00
    大豆浓缩蛋白 Soy protein concentrate 8.50 8.50 8.50
    小麦面粉 Wheat meal 20.00 19.93 19.40
    大豆卵磷脂 Soybean lecithin 1.00 1.00 1.00
    鱼油 Fish oil 6.00 6.00 6.00
    维生素+矿物质预混料a Vitamin+mineral premix 1.00 1.00 1.00
    氯化胆碱 Choline chloride (50%) 0.50 0.50 0.50
    磷酸二氢钙 Monocalcium phosphate 0.50 0.50 0.50
    褐藻寡糖 Alginate oligosaccharide 0 0.07 0.60
    甜菜碱 Betaine 0.50 0.50 0.50
    总计 Total 100 100 100
    近似成分 Proximate composition/%
    干物质 Dry matter 93.89 93.13 92.75
    粗蛋白 Crude protein 43.28 42.71 42.48
    粗脂肪 Crude lipid 9.38 8.99 9.62
    粗灰分 Ash 11.49 11.63 11.71
    注:a. 购自无锡华诺威动物保健品有限公司;按照产品说明书,每1 kg饲料中添加10 g 维生素矿物质预混料。 Note: Note: a. Purchased from Wuxi Hanove Animal Health Products Co., Ltd., China. According to the instruction, 10 g vitamin/mineral premix was added into per 1 kg feed.
    下载: 导出CSV

    表  2   实时荧光定量PCR引物序列

    Table  2.    Sequences of primers used for real-time PCR

    基因
    Gene
    序列
    Sequence
    ikk[20] F: 5'-CCTGGAGAACTGCTGTGGAATGAG-3'
    R:3'-ATGGAGGTAGGTCAGAGCCGAAG-5'
    iκb[20] F: 5'-GCTGGTCCATTGCCTCCTGAAC-3'
    R: 3'-GTGCCGTCTTCTCGTACAACTGG-5'
    nf-κb[21] F: 5'-TGCGACAAAGTCCAGAAAGAT-3'
    R: 3'-CTGAGGGTGGTAGGTGAAGGG-5'
    tnf-α[21] F: 5'-CGCAATCGTAAAGAGTCCCA-3'
    R: 3'-AAGTCACAGTCGGCGAAATG-5'
    tgf-β[21] F: 5'-TATCCCTCTACAACAGCACCA-3'
    R: 3'-GGTCAGCAGGCGGTAATC-5'
    il-8[21] F: 5'-GAGAAGCCTGGGAATGGA-3'
    R: 3'-GAGCCTCAGGGTCTAAGCA-5'
    β-actin[21] F: 5'-TGAACCCCAAAGCCAACAGG-3'
    R: 3'-CCGCAGGACTCCATACCAAG-5'
    下载: 导出CSV

    表  3   饲料中添加褐藻寡糖对卵形鲳鲹幼鱼生长性能和饲料利用率的影响

    Table  3.    Effects of dietary AO on growth performance of juvenile T. ovatus and feed utilization

    项目 Item  组别 Group
    TCA1A2
    初始体质量 Initial body mass/g 6.10±0.09 6.03±0.05 6.06±0.01
    终末体质量 Final body mass/g 73.86±1.09a 84.11±1.75b 83.73±2.15b
    增重率 Weight gain rate/% 1 111.72±23.29a 1 295.81±38.57b 1 281.88±37.95b
    特定生长率 Specific growth rate/(%·d−1) 4.30±0.03a 4.54±0.05b 4.53±0.05b
    饲料系数 Feed conversion ratio 1.55±0.02b 1.46±0.02a 1.51±0.03ab
    成活率 Survival rate/% 98.67±1.33 100.00±0.00 92.00±6.11
    脏体指数 Viscerosomatic index/% 6.72±0.16 6.46±0.24 6.90±0.23
    肝体指数 Hepatosomatic index/% 1.40±0.11 1.17±0.09 1.31±0.01
    肥满度 Condition factor /(g·cm−3) 3.83±0.05a 3.85±0.09a 4.10±0.06b
    注:同行不同字母表示组间差异显著(P<0.05),下表如此。 Note: Values with different letters within the same row indicate significant difference (P<0.05). The same in the following tables.
    下载: 导出CSV

    表  4   饲料中添加褐藻寡糖对卵形鲳鲹幼鱼体成分和肌肉成分的影响

    Table  4.    Effects of dietary AO on proximate composition of whole body and muscle of juvenile T. ovatus %

    项目 Item  组别 Group
    TCA1A2
    全鱼 Whole body
    水分 Moisture 66.82±1.13 65.99±0.83 65.81±0.46
    粗蛋白 Crude protein 17.17±0.18 17.11±0.09 16.78±0.11
    粗脂肪 Crude lipid 11.96±1.06 12.78±0.70 12.96±0.45
    粗灰分 Ash 3.73±0.02 3.57±0.07 3.62±0.06
    肌肉 Muscle
    水分 Moisture 25.55±0.52 24.64±0.24 25.66±0.29
    粗蛋白 Crude protein 56.44±1.18b 55.63±0.35b 52.02±0.50a
    粗脂肪 Crude lipid 8.11±0.34a 8.32±0.86a 10.38±0.37b
    粗灰分 Ash 3.74±0.22 3.83±0.09 3.79±0.17
    下载: 导出CSV

    表  5   饲料中添加褐藻寡糖对卵形鲳鲹血浆生化及免疫指标的影响

    Table  5.    Effects of dietary AO on plasma biochemical and immune parameters of juvenile T. ovatus

    项目 Item      组别 Group
    TCA1A2
    血糖 Glucose/(mmol·L−1) 14.02±0.58b 12.21±0.51a 13.96±0.21b
    甘油三酯 Triglyceride/(mmol·L−1) 1.62±0.01b 1.46±0.01a 1.53±0.06ab
    总蛋白 Total protein/(g·L-1) 38.30±1.57 39.30±1.65 40.47±1.77
    补体C3 Complement C3/(mg·L−1) 40.48±1.65a 55.42±0.56b 51.30±4.92b
    补体C4 Complement C4/(mg·L−1) 54.19±2.38b 52.75±3.37b 42.34±1.46a
    碱性磷酸酶 Alkaline phosphatase/(U·L−1) 40.00±2.31a 46.33±2.03ab 53.00±2.65b
    下载: 导出CSV

    表  6   饲料中添加褐藻寡糖对卵形鲳鲹幼鱼肝脏抗氧化能力的影响

    Table  6.    Effects of dietary AO on hepatic antioxidative capacity of juvenile T. ovatus

    项目 Item      组别 Group
    TCA1A2
    超氧化物歧化酶 SOD/(U·mg−1) 176.22±3.23a 211.86±1.39b 211.03±2.58b
    过氧化氢酶 CAT/(U·mg−1) 92.82±5.07a 112.58±3.53b 141.91±2.02c
    过氧化物酶 POD/(U·mg−1) 17.53±0.08a 21.66±0.21b 21.92±0.55b
    谷胱甘肽还原酶 GR/(U·g−1) 2.19±0.21a 4.18±0.10b 3.77±0.15b
    谷胱甘肽过氧化物酶 GSH-Px/(U·mg−1) 7.66±0.42 8.12±0.17 7.72±0.48
    总抗氧化能力 T-AOC/(mmol·g−1) 36.85±0.44a 42.03±0.61b 43.03±0.61b
    丙二醛 MDA/(nmol·g−1) 2.27±0.06b 1.81±0.07a 1.88±0.08a
    下载: 导出CSV

    表  7   饲料中添加褐藻寡糖对卵形鲳鲹幼鱼肠道组织形态学指标的影响

    Table  7.    Effects of dietary AO on intestine morphological parameters of juvenile T. ovatus

    项目 Item   组别 Group
    TCA1A2
    绒毛高度 Villus height/m 631.53±8.72a 765.77±14.73c 726.84±2.86b
    隐窝深度 Crypt depth/m 55.41±1.41 55.50±2.04 52.91±0.48
    肌层厚度 Muscular layer thickness/m 243.57±25.16 250.67±6.32 248.10±12.41
    下载: 导出CSV
  • [1] 李明波, 沈凡, 崔庆奎, 等. 壳寡糖对杂交黄颡鱼“黄优1号” (黄颡鱼♀×瓦氏黄颡鱼♂) 生长性能与免疫机能的影响[J]. 水生生物学报, 2020, 44(4): 707-716. doi: 10.7541/2020.085
    [2] 胡凌豪, 杨红玲, 赵芸, 等. 果寡糖对斜带石斑鱼免疫功能和肠道形态的影响[J]. 水产科学, 2019, 38(5): 589-594.
    [3] 刘爱君, 冷向军, 李小勤, 等. 甘露寡糖对奥尼罗非鱼 (Oreochromis niloticus×O. aureus) 生长、肠道结构和非特异性免疫的影响[J]. 浙江大学学报 (农业与生命科学版), 2009, 35(3): 329-336.
    [4] 田娟, 孙立威, 文华, 等. 壳寡糖对吉富罗非鱼幼鱼生长性能、前肠组织结构及肠道主要菌群的影响[J]. 中国水产科学, 2013, 20(3): 561-568.
    [5] 陈嘉俊, 石韫玉, 施斐, 等. 壳寡糖改善珍珠龙胆石斑鱼非特异性免疫能力的机制研究[J/OL]. 水产学报, 2021: 1-12. [2021-09-09]. http://kns.cnki.net/kcms/detail/31.1283.s.20210625.0940.002.html.
    [6] 胡晓伟, 上官静波, 黎中宝, 等. 低聚木糖对花鲈幼鱼生长性能、血清生化和免疫指标及肠道菌群组成的影响[J]. 动物营养学报, 2018, 30(2): 734-742. doi: 10.3969/j.issn.1006-267x.2018.02.039
    [7] 王杰, 杨红玲, 赵芸, 等. 果寡糖对斜带石斑鱼生长性能和消化酶活性的影响[J]. 饲料与畜牧, 2016(12): 54-57.
    [8] 赵峰, 陆娟娟, 夏中生, 等. 果寡糖对奥尼罗非鱼生长性能、血清生化指标和肠道菌群的影响[J]. 饲料工业, 2018, 39(20): 28-33.
    [9] 张荣斌, 曹俊明, 黄燕华, 等. 饲料中添加低聚木糖对奥尼罗非鱼生长性能和血清生化指标的影响[J]. 动物营养学报, 2011, 23(11): 2000-2008. doi: 10.3969/j.issn.1006-267x.2011.11.022
    [10] 张荣斌, 曹俊明, 黄燕华, 等. 低聚木糖对奥尼罗非鱼肠道形态、菌群组成和抗嗜水气单胞菌感染的影响[J]. 上海海洋大学学报, 2012, 21(2): 233-240.
    [11] 于朝磊, 常青, 吕云云. 甘露寡糖对半滑舌鳎 (Cynoglossus semilaevis Günther) 稚鱼生长、肠道发育和非特异性免疫水平的影响[J]. 渔业科学进展, 2014, 35(6): 53-59. doi: 10.11758/yykxjz.20140608
    [12] 孙盛明, 谢骏, 朱健, 等. 饲料中添加甘露寡糖对团头鲂幼鱼生长性能、抗氧化能力和肠道菌群的影响[J]. 动物营养学报, 2014, 26(11): 3371-3379. doi: 10.3969/j.issn.1006-267x.2014.11.025
    [13] 徐磊, 刘波, 谢骏, 等. 甘露寡糖对异育银鲫生长性能、免疫及HSP70基因表达的影响[J]. 水生生物学报, 2012, 36(4): 656-664.
    [14] 傅政, 张凤超, 李玉姣, 等. 褐藻胶寡糖生物活性研究进展[J]. 中国海洋药物, 2020, 39(5): 65-74.
    [15] GUPTA S, LOKESH J, ABDELHAFIZ Y, et al. Macroalga-Derived Alginate Oligosaccharide Alters Intestinal Bacteria of Atlantic Salmon[J]. Front Microbiol, 2019, 10: 2037. doi: 10.3389/fmicb.2019.02037
    [16] Van DOAN H, HOSEINIFAR S H, TAPINGKAE W, et al. Combined administration of low molecular weight sodium alginate boosted immunomodulatory, disease resistance and growth enhancing effects of Lactobacillus plantarum in Nile tilapia (Oreochromis niloticus)[J]. Fish Shellfish Immunol, 2016, 58: 678-685. doi: 10.1016/j.fsi.2016.10.013
    [17] HU J, ZHANG J, WU S. The growth performance and non-specific immunity of juvenile grass carp (Ctenopharyngodon idella) affected by dietary alginate oligosaccharide[J]. 3 Biotech, 2021, 11(2): 46. doi: 10.1007/s13205-020-02589-4
    [18] ASHOURI G, SOOFIANI N M, HOSEINIFAR S H, et al. Influence of dietary sodium alginate and Pediococcus acidilactici on liver antioxidant status, intestinal lysozyme gene expression, histomorphology, microbiota, and digestive enzymes activity, in Asian sea bass (Lates calcarifer) juveniles[J]. Aquaculture, 2020, 518: 734638. doi: 10.1016/j.aquaculture.2019.734638
    [19] HUANG Q, LIN H, WANG R, et al. Effect of dietary vitamin B6 supplementation on growth and intestinal microflora of juvenile golden pompano (Trachinotus ovatus)[J]. Aquac Res, 2019, 50(9): 2359-2370. doi: 10.1111/are.14117
    [20] XIE J, FANG H, HE X, et al. Study on mechanism of synthetic astaxanthin and Haematococcus pluvialis improving the growth performance and antioxidant capacity under acute hypoxia stress of golden pompano (Trachinotus ovatus) and enhancing anti-inflammatory by activating Nrf2-ARE pathway to antagonize the NF-κB pathway[J]. Aquaculture, 2020, 518: 734657. doi: 10.1016/j.aquaculture.2019.734657
    [21] ZHOU C P, LIN H Z, HUANG Z, et al. Effects of dietary leucine levels on intestinal antioxidant status and immune response for juvenile golden pompano (Trachinotus ovatus) involved in nrf2 and nf-κb signaling pathway[J]. Fish Shellfish Immunol, 2020, 107: 336-345. doi: 10.1016/j.fsi.2020.10.012
    [22] LIVAK K J, SCHMIYYGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt Method[J]. Methods, 2001, 25(4): 402-408. doi: 10.1006/meth.2001.1262
    [23] VAN DOAN H, HOSEINIFAR S H, TAPINGKAE W, et al. The effects of dietary kefir and low molecular weight sodium alginate on serum immune parameters, resistance against Streptococcus agalactiae and growth performance in Nile tilapia (Oreochromis niloticus)[J]. Fish Shellfish Immunol, 2017, 62: 139-146. doi: 10.1016/j.fsi.2017.01.014
    [24] WAN J, ZHANG J, CHEN D, et al. Effects of alginate oligosaccharide on the growth performance, antioxidant capacity and intestinal digestion-absorption function in weaned pigs[J]. Anim Feed Sci Technol, 2017, 234: 118-127. doi: 10.1016/j.anifeedsci.2017.09.006
    [25] BAGNI M, ROMANO N, FINOIA M G, et al. Short- and long-term effects of a dietary yeast β-glucan (Macrogard) and alginic acid (Ergosan) preparation on immune response in sea bass (Dicentrarchus labrax)[J]. Fish Shellfish Immunol, 2005, 18(4): 311-325. doi: 10.1016/j.fsi.2004.08.003
    [26] JONES R E, RETRELL R J, PAULY D. Using modified length-weight relationships to assess the condition of fish[J]. Aquacult Eng, 1999, 20(4): 261-276. doi: 10.1016/S0144-8609(99)00020-5
    [27] SCHULTE-HOSTEDDE A I, ZINNER B, MILLAR J S, et al. Restitution of mass-size residuals: validating body condition indices[J]. Ecology, 2005, 86(1): 155-163. doi: 10.1890/04-0232
    [28] HOSEINIFAR S H, DADAR M, RINGø E. Modulation of nutrient digestibility and digestive enzyme activities in aquatic animals: the functional feed additives scenario[J]. Aquac Res, 2017, 48(8): 3987-4000. doi: 10.1111/are.13368
    [29] 严晶. 饲料脂肪水平和脂肪酸种类对大黄鱼脂肪沉积的影响[D]. 青岛: 中国海洋大学, 2015: 4-7.
    [30] 赵旭, 徐群, 侯彦茹, 等. ANGPTL4在肠道微生物影响动物脂肪代谢中的作用[J]. 生物技术通报, 2020, 36(6): 230-235.
    [31] WANG Y, LI L, YE C, et al. Alginate oligosaccharide improves lipid metabolism and inflammation by modulating gut microbiota in high-fat diet fed mice[J]. Appl Microbiol Biotechnol, 2020, 104(8): 3541-3554. doi: 10.1007/s00253-020-10449-7
    [32] ABUQWIDER J N, MAURIELLO G, ALTAMIMI M. Akkermansia muciniphila, a new generation of beneficial microbiota in modulating obesity: a systematic review[J]. Microorganisms, 2021, 9(5): 1098. doi: 10.3390/microorganisms9051098
    [33] VERHOOG S, TANERI P E, ROA DIAZ Z M, et al. Dietary Factors and Modulation of Bacteria Strains of Akkermansia muciniphila and Faecalibacterium prausnitzii: a systematic review[J]. Nutrients, 2019, 11(7): 1565-1584. doi: 10.3390/nu11071565
    [34] DEN BESTEN G, BLEEKER A, GERDING A, et al. Short-chain fatty acids protect against high-fat diet-induced obesity via a PPAR-dependent switch from lipogenesis to fat oxidation[J]. Diabetes, 2015, 64(7): 2398-2408. doi: 10.2337/db14-1213
    [35] BAGNI M, ROMANO N, FINOIA M G, et al. Short- and long-term effects of a dietary yeast β-glucan (Macrogard) and alginic acid (Ergosan) preparation on immune response in sea bass (Dicentrarchus labrax)[J]. Fish Shellfish Immunol, 2005, 18(4): 311-325. doi: 10.1016/j.fsi.2004.08.003
    [36] WAN J, ZHANG J, CHEN D, et al. Alginate oligosaccharide-induced intestinal morphology, barrier function and epithelium apoptosis modifications have beneficial effects on the growth performance of weaned pigs[J]. J Anim Sci Biotechnol, 2018, 9: 58. doi: 10.1186/s40104-018-0273-x
    [37] 江晓路, 杜以帅, 王鹏, 等. 褐藻寡糖对刺参体腔液和体壁免疫相关酶活性变化的影响[J]. 中国海洋大学学报, 2009, 39(6): 1188-1192.
    [38] 王鹏, 江晓路, 江艳华, 等. 褐藻低聚糖对提高大菱鲆免疫机能的作用[J]. 海洋科学, 2006, 30(8): 6-9. doi: 10.3969/j.issn.1000-3096.2006.08.003
    [39] VALENTE L M P, BATISTA S, RIBEIRO C, et al. Physical processing or supplementation of feeds with phytogenic compounds, alginate oligosaccharide or nucleotides as methods to improve the utilization of Gracilaria gracilis by juvenile European seabass (Dicentrarchus labrax)[J]. Aquaculture, 2021, 530: 735914. doi: 10.1016/j.aquaculture.2020.735914
    [40] MALO M S, MOAVEN O, MUHAMMAD N, et al. Intestinal alkaline phosphatase promotes gut bacterial growth by reducing the concentration of luminal nucleotide triphosphates[J]. Am J Physiol Gastrointest Liver Physiol, 2014, 306: G826-G838. doi: 10.1152/ajpgi.00357.2013
    [41] 薛静波, 刘希英, 张鸿芬. 海带多糖对小鼠腹腔巨噬细胞的激活作用[J]. 中国海洋药物, 1999(3): 23-25.
    [42] 闵力, 刘立恒, 许兰娇, 等. 功能性寡糖的研究进展[J]. 饲料研究, 2012(9): 18-22. doi: 10.3969/j.issn.1002-2813.2012.09.007
    [43] CIRCU M L, AW T Y. Reactive oxygen species, cellular redox systems, and apoptosis[J]. Free rad Biol Med, 2010, 48(6): 749-762. doi: 10.1016/j.freeradbiomed.2009.12.022
    [44] HSIEH C C, PAPACONSTANTINOU J. Thioredoxin-ASK1 complex levels regulate ROS-mediated p38 MAPK pathway activity in livers of aged and long-lived snell dwarf mice[J]. Faseb J, 2006, 20(2): 259-268. doi: 10.1096/fj.05-4376com
    [45] VALKO M, LEIBFRITZ D, MONCOL J, et al. Free radicals and antioxidants in normal physiological functions and human disease[J]. Int J Bioch Cell Biol, 2007, 39(1): 44-84. doi: 10.1016/j.biocel.2006.07.001
    [46] NORDBERG J, ARNER E S. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system[J]. Free Rad Biol Med, 2001, 31(11): 1287-1312. doi: 10.1016/S0891-5849(01)00724-9
    [47] 张说, 赵强, 武雨心, 等. 红细胞抗氧化损伤研究进展[J]. 包头医学院学报, 2020, 36(1): 104-106.
    [48] WINSTON G W, GIULIO R T D. Prooxidant and antioxidant mechanisms in aquatic organisms[J]. Aquat Toxicol, 1991, 19(2): 137-161. doi: 10.1016/0166-445X(91)90033-6
    [49] GEBICKA L, KRYCH-MADEJ J. The role of catalases in the prevention/promotion of oxidative stress[J]. J Inorg Biochem, 2019, 197: 110699. doi: 10.1016/j.jinorgbio.2019.110699
    [50] HUNG M Y, FU T Y, SHIH P H, et al. Du-Zhong (Eucommia ulmoides Oliv. ) leaves inhibits CCl4-induced hepatic damage in rats[J]. Food Chem Toxicol, 2006, 44(8): 1424-1431. doi: 10.1016/j.fct.2006.03.009
    [51] 曾祥兵, 董宏标, 韦政坤, 等. 鸡内金多糖对尖吻鲈幼鱼生长、消化、肠道抗氧化能力和血清生化指标的影响[J]. 南方水产科学, 2021, 17(4): 49-57. doi: 10.12131/20210028
    [52] 虞为, 杨育凯, 林黑着, 等. 牛磺酸对花鲈生长性能、消化酶活性、抗氧化能力及免疫指标的影响[J]. 南方水产科学, 2021, 17(2): 78-86. doi: 10.12131/20200223
    [53] VIZCAINO A J, LOPEZ G, SAEZ M I, et al. Effects of the microalga Scenedesmus almeriensis as fishmeal alternative in diets for gilthead sea bream, Sparus aurata, juveniles[J]. Aquaculture, 2014, 431: 34-43. doi: 10.1016/j.aquaculture.2014.05.010
    [54] 麦浩彬, 郭鑫伟, 王金港, 等. 摄食不同水平饲料蛋白质对珍珠龙胆石斑鱼幼鱼肠道组织形态和菌群组成的影响[J]. 大连海洋大学学报, 2020, 35(1): 63-70.
    [55] ZHAO H, CAO J, HUANG Y, et al. Effects of dietary nucleotides on growth, physiological parameters and antioxidant responses of juvenile yellow catfish Pelteobagrus fulvidraco[J]. Aquac Res, 2017, 48(1): 214-222. doi: 10.1111/are.12875
    [56] BECATTINI S, TAUR Y, PAMER E G. Antibiotic-induced changes in the intestinal microbiota and disease[J]. Trends Mol Med, 2016, 22(6): 458-478. doi: 10.1016/j.molmed.2016.04.003
    [57] WULLAERT A, BONNET M C, PASPARAKIS M. NF-kappaB in the regulation of epithelial homeostasis and inflammation[J]. Cell Res, 2011, 21(1): 146-158. doi: 10.1038/cr.2010.175
    [58] KAVITHA K, KOWSHIK J, KISHORE T K, et al. Astaxanthin inhibits NF-kappaB and Wnt/beta-catenin signaling pathways via inactivation of Erk/MAPK and PI3K/Akt to induce intrinsic apoptosis in a hamster model of oral cancer[J]. Biochim Biophys Acta, 2013, 1830(10): 4433-4444. doi: 10.1016/j.bbagen.2013.05.032
    [59] KARIN M, GRETEN F R. NF-κB: linking inflammation and immunity to cancer development and progression[J]. Nat Rev Immunol, 2005, 5(10): 749-759. doi: 10.1038/nri1703
    [60] YU Y, HE J, LI S, et al. Fibroblast growth factor 21 (FGF21) inhibits macrophage-mediated inflammation by activating Nrf2 and suppressing the NF-kappaB signaling pathway[J]. Int Immunopharmacol, 2016, 38: 144-152. doi: 10.1016/j.intimp.2016.05.026
    [61] RAIDA M K, BUCHMANN K. Bath vaccination of rainbow trout (Oncorhynchus mykiss Walbaum) against Yersinia ruckeri: effects of temperature on protection and gene expression[J]. Vaccine, 2008, 26(8): 1050-1062. doi: 10.1016/j.vaccine.2007.12.029
    [62] FEI Y, CHEN Z, HAN S, et al. Role of prebiotics in enhancing the function of next-generation probiotics in gut microbiota[J/OL]. Crit Rev Food Sci Nutr, 2021: 1-18. [2021-09-09]. https://doi.org/10.1080/10408398.2021.1958744.
    [63] RAMNANI P, CHITARRARI R, TUOHY K, et al. In vitro fermentation and prebiotic potential of novel low molecular weight polysaccharides derived from agar and alginate seaweeds[J]. Anaerobe, 2012, 18(1): 1-6. doi: 10.1016/j.anaerobe.2011.08.003
  • 加载中
计量
  • 文章访问数:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-31
  • 修回日期:  2021-09-02
  • 录用日期:  2021-10-20
  • 网络出版日期:  2021-11-01

目录

    /

    返回文章
    返回