Spatial distribution and density changes of fish resources in East Dongting Lake during early fishing ban period
-
摘要: 为了摸清禁渔初期东洞庭湖鱼类资源密度分布情况,为禁渔效果评估和渔业资源保护提供数据支撑,于2020年11月2—8日对东洞庭湖中心湖区及湘江洪道进行水声学调查。结果表明,调查水域的鱼类平均目标强度为−46.48 dB,平均体长约为18.66 cm,体长范围为1.63~113.50 cm,不同区域间的鱼类目标强度存在显著性差异 (P<0.05)。调查水域的鱼类平均密度为 150.20 尾·(1 000 m3)−1,介于14.47~1 823.95 尾·(1 000 m3)−1,湖区的鱼类平均密度大于洪道,不同区域间鱼类平均密度存在显著性差异 (P<0.05),江湖交汇处的鱼类密度最高。对比东洞庭湖禁渔前 (2015年) 的调查数据,禁渔后的鱼类平均目标强度有所降低,而鱼类平均密度显著上升 (P<0.05)。Abstract: In order to find out the density distribution of fish resources in the East Dongting Lake during the early fishing ban period, and provide data support for the effect evaluation of the fishing ban and the protection of fishery resources, we conducted the hydroacoustic surveys in the central area of the East Dongting Lake and the Xiangjiang floodway from November 2 to 8, 2020. The results show that the average target strength of fish in the survey area was −46.48 dB; the average body length was about 18.66 cm, and the body length ranged from 1.63 to 113.50 cm. The difference of fish target intensity between the different regions was significant. The average fish density in all the survey segments was 150.20 ind.· (1 000 m3)−1, ranging from 14.47 to 1 823.95 ind.· (1 000 m3)−1. The average fish density in the East Dongting Lake was greater than that in the Xiangjiang floodway, and there were significant differences in the average density of fish among different regions (P<0.05), highest at the confluence of rivers and lakes. Compared with the survey data of the East Dongting Lake before the fishing ban (2015), the average target intensity of fish after the fishing ban decreased, while the average density of fish increased significantly (P<0.05).
-
Key words:
- Fishery resources /
- Hydroacoustics /
- Spatial distribution /
- Fishing ban /
- East Dongting Lake
-
表 1 东洞庭湖水声学调查的基本信息
Table 1. Basic information of hydroacoustic survey in East Dongting Lake
日期
Date区域类型
Area type编号
No.调查区域
Survey area航程
Voyage/km平均水深
Average depth/m温度
Temperature/°C11月2日 Nov.2nd 湖区 Lake area A 东北湖 The northeast of lake 25.7 3.32 18.5 11月4日 Nov.4th B 中部湖区 The center of lake 25.8 3.11 18.4 11月5日 Nov.5th 洪道 Flood way C 岳阳—扁山 Yueyang–Bianshan 11.0 7.98 18.4 11月6日 Nov.6th D 扁山—鹿角 Bianshan–Lujiao 21.5 10.43 18.9 11月7日 Nov.7th E 鹿角—鲇鱼口 Lujiao–Nianyukou 27.6 12.45 19.0 11月8日 Nov.8th F 鲇鱼口—屈原 Nianyukou–Quyuan 18.0 6.15 19.1 表 2 ER60主要参数设置
Table 2. Main parameters of ER60
Sonar X参数
Sonar X parameter参数设置
Parameter setting前景滤波器 Foreground filter [1,3] 背景滤波器 Background filter [55,1] 目标平滑滤波 Target smooth filter [1,3] 信号长度 Signal length [3,50] 最大增益补偿 Maximum gain compensation 6 dB 最小目标长度 Min. track length 2 ping 最大脉冲缺失 Max. ping gap 2 ping 门阀过滤范围 Gating range 0.3 m 表 3 东洞庭湖鱼类目标强度空间分布
Table 3. Spatial distribution of fish target strengths in East Dongting Lake
dB 调查航段
Survey segment平均值
Average标准差
Standard deviation最大值
Max. TS最小值
Min. TSA −40.32ab 7.60 −30.97 −65.03 B −39.29a 3.93 −30.80 −67.01 C −51.22c 7.04 −50.67 −67.36 D −50.39bc 3.93 −43.90 −60.72 E −48.57bc 8.35 −47.64 −62.42 F −49.11bc 8.03 −51.90 −67.67 注:不同上标字母表示差异显著 (P<0.05),后表同此。 Note: Different superscript letters indicate significant difference (P<0.05). The same below. 表 4 东洞庭湖鱼类密度空间分布
Table 4. Spatial distribution of fish density in East Dongting Lake
调查航段
Survey
segment平均密度
Average density/
[尾·(1 000 m3)−1]最大密度
Max density/
[尾·(1 000 m3)−1]最小密度
Min density/
[尾·(1 000 m3)−1]A 112.24b 1 549.84 10.01 B 272.93a 671.69 9.12 C 263.56ab 1 823.95 11.03 D 121.72b 473.00 12.67 E 31.96bc 136.36 11.97 F 14.52bc 54.08 2.96 表 5 东洞庭湖渔获物鱼类种类组成
Table 5. Composition of fish species in East Dongting Lake
种类
Species数量占比
Quantity percentage/%体长
Body length/cm范围
Range平均值
Average短颌鲚 C. brachygnathus 23.67 11.00~26.00 15.12 鲫 C. auratus 13.76 6.00~18.20 11.38 似鳊 P. simoni 11.55 6.00~8.20 6.96 鲢 H. molitrix 10.95 11.50~36.50 17.29 鲤 C. carpio 10.25 15.20~36.10 20.45 䱗 H. leucisculus 5.30 7.00~12.50 9.58 麦穗鱼 P. parva 3.89 7.20~9.90 7.64 鳑鲏 Rhodeinae 3.53 10.10~10.40 11.03 银鲴 X. argentea 2.83 8.30~18.40 9.63 草鱼 C. idellus 2.47 21.60~39.20 23.16 团头鲂 M. amblycephala 2.47 9.30~22.50 14.14 翘嘴鲌 C. alburnus 1.06 16.70~26.50 22.50 鳊 P. pekinensis 1.06 8.80~27.50 14.58 -
[1] 窦鸿身, 姜家虎. 洞庭湖[M]. 合肥: 中国科学技术大学出版社, 2000: 3-278. [2] 常剑波, 曹文宣. 通江湖泊的渔业意义及其资源管理对策[J]. 长江流域资源与环境, 1999, 8: 153-157. [3] 杨健, 肖文, 匡兴安, 等. 洞庭湖、鄱阳湖白暨豚和长江江豚的生态学研究[J]. 长江流域资源与环境, 2000, 9(4): 444-450. doi: 10.3969/j.issn.1004-8227.2000.04.008 [4] 谢拥军, 张脱冬. 洞庭湖江豚保护现状及对策[J]. 岳阳职业技术学院学报, 2017, 32(5): 22-26, 109. doi: 10.3969/j.issn.1672-738X.2017.05.007 [5] 廖伏初, 何望, 黄向荣, 等. 洞庭湖渔业资源现状及其变化[J]. 水生生物学报, 2002, 26(6): 623-627. doi: 10.3321/j.issn:1000-3207.2002.06.008 [6] 茹辉军, 刘学勤, 黄向荣, 等. 大型通江湖泊洞庭湖的鱼类物种多样性及其时空变化[J]. 湖泊科学, 2008, 20(1): 93-99. doi: 10.3321/j.issn:1003-5427.2008.01.014 [7] 李杰钦. 洞庭湖鱼类群落生态研究及保育对策[D]. 长沙: 中南林业科技大学, 2013: 39-40. [8] 谢意军, 王珂, 郭杰, 等. 基于水声学方法的东洞庭湖鱼类空间分布和资源量评估[J]. 淡水渔业, 2016, 46(3): 40-46. doi: 10.3969/j.issn.1000-6907.2016.03.007 [9] 王崇瑞, 索纹纹, 蒋国民, 等. 东洞庭湖长江江豚及其与鱼类资源相关性[J]. 中国环境科学, 2019, 39(10): 4424-4434. doi: 10.3969/j.issn.1000-6923.2019.10.048 [10] 王琦, 欧伏平, 张雷, 等. 三峡工程运行后洞庭湖水环境变化及影响分析[J]. 长江流域资源与环境, 2015, 24(11): 1843-1849. doi: 10.11870/cjlyzyyhj201511006 [11] 张文武, 马琴, 黎明政, 等. 三峡水库和长江中下游通江湖泊 (洞庭湖和鄱阳湖) 草鱼、鲢的孵化日期及早期生长特征[J]. 湖泊科学, 2020, 32(3): 804-812. doi: 10.18307/2020.0320 [12] FU C Z, WU J H, CHEN K J, et al. Freshwater fish biodiversity in the Yangtze River basin of China: patterns, threats and conservation[J]. Biodivers Conserv, 2003, 12: 1649-1685. doi: 10.1023/A:1023697714517 [13] 袁延文. 坚决落实长江“十年禁渔”令, 确保在湖南落地见效[J]. 湖南农业, 2021(1): 1. doi: 10.3969/j.issn.1005-362X.2021.01.001 [14] 李斌, 陈国宝, 郭禹, 等. 南海中部海域渔业资源时空分布和资源量的水声学评估[J]. 南方水产科学, 2016, 12(4): 28-37. doi: 10.3969/j.issn.2095-0780.2016.04.004 [15] 黄朔, 李连翔, 刀微, 等. 泸沽湖鱼类空间分布特征分析与资源量评估[J]. 南方水产科学, 2020, 16(1): 53-61. doi: 10.12131/20190180 [16] 谭细畅, 史建全, 张宏, 等. EY60回声探测仪在青海湖鱼类资源量评估中的应用[J]. 湖泊科学, 2009, 21(6): 865-872. doi: 10.18307/2009.0617 [17] 孙明波, 谷孝鸿, 曾庆飞, 等. 基于水声学方法的天目湖鱼类季节和昼夜空间分布研究[J]. 生态学报, 2015, 35(17): 5597-5605. [18] 陈文静, 贺刚, 吴斌, 等. 鄱阳湖通江水道鱼类空间分布特征及资源量评估[J]. 湖泊科学, 2017, 29(4): 923-931. [19] FOOTE K G. Fish target strengths for use in echo integrator surveys[J]. J Acoust Soc Am, 1987, 82(3): 981-987. doi: 10.1121/1.395298 [20] BALK H. Development of hydroacoustic methods for fish detection in shallow water[D]. Norway: University of Oslo, 2001: 191-208. [21] 刘艳佳, 高雷, 郑永华, 等. 洞庭湖通江水道鱼类资源的周年动态及其洄游特征研究[J]. 长江流域资源与环境, 2020, 29(2): 376-385. [22] BALK H, LINDEM T. Sonar 4, Sonar 5 post-processing systems operator manual version 5.9.8[M]. Oslo: University of Oslo, 2008: 192-196. [23] PETITGAS P. Geostatistics for fish stock assessments: a review and an acoustic application[J]. ICES J Mar Sci, 1993, 50(3): 285-298. doi: 10.1006/jmsc.1993.1031 [24] LI X, CHENG G D, LU L. Comparison of spatial interpolation methods[J]. Adv Earthen, 2000, 15(3): 260-265. [25] BLABER S J, BLABER T G. Factors affecting the distribution of juvenile estuarine and inshore fish[J]. J Fish Biol, 1980, 17(2): 143-162. doi: 10.1111/j.1095-8649.1980.tb02749.x [26] HOLLES S, SIMPSON S D, RADFORD A N, et al. Boat noise disrupts orientation behaviour in a coral reef fish[J]. Mar Ecol Prog Ser, 2013, 485: 295-300. doi: 10.3354/meps10346 [27] 蒋万祥, 赖子尼, 庞世勋, 等. 珠江口叶绿素a时空分布及初级生产力[J]. 生态与农村环境学报, 2010, 26(2): 132-136. doi: 10.3969/j.issn.1673-4831.2010.02.007 [28] 周磊, 李育森, 施军, 等. 基于水声学探测的洪潮江水库鱼类资源空间分布及其与环境因子的相关性[J]. 渔业科学进展. 2021, 42(1): 1-10. [29] 李胜男, 熊丽萍, 彭华, 等. 东洞庭湖浮游藻类粒级结构组成及其关键影响因子[J]. 湖泊科学, 2020, 32(5): 1508-1518. doi: 10.18307/2020.0522 [30] FERNANDAS C C, PODOS J, LUNDBERG J C. Amazonian ecology: tributaries enhance the diversity of electric fishes[J]. Science, 2004, 305(5692): 1960-1962. doi: 10.1126/science.1101240 [31] TAVERNINI, D A, RICHARDSON J S. Effects of tributary size on the resource supply and physical habitat at tributary junctions along two mainstem rivers[J]. Can J Fish Aquat Sci, 2020, 77(8): 1393-1408. doi: 10.1139/cjfas-2019-0435 [32] 傅园园, 黄河仙, 张琦, 等. 东洞庭湖浮游藻类群落的结构特征及物种多样性分析[J]. 生命科学研究, 2016, 20(1): 8-15. [33] 段辛斌, 刘绍平, 熊飞, 等. 长江上游干流春季禁渔前后三年渔获物结构和生物多样性分析[J]. 长江流域资源与环境, 2008, 17(6): 878-885. doi: 10.3969/j.issn.1004-8227.2008.06.010 [34] 张敏莹, 徐东坡, 刘凯, 等. 长江安庆江段鱼类调查及物种多样性初步研究[J]. 湖泊科学, 2006, 18(6): 670-676. doi: 10.3321/j.issn:1003-5427.2006.06.017 [35] 徐东坡, 张敏莹, 刘凯, 等. 长江安庆江段春禁前后渔业生物 多样性的变化[J]. 安徽农业大学学报, 2006, 33(1): 76-80. doi: 10.3969/j.issn.1672-352X.2006.01.017 [36] 武智, 谭细畅, 李新辉, 等. 珠江首次禁渔西江段鱼类资源声学跟踪监测分析[J]. 南方水产科学, 2014, 10(3): 24-28. doi: 10.3969/j.issn.2095-0780.2014.03.004 -