林枫, 贾若南, 王法祥, 许强华. 低氧胁迫下斑马鱼鳃microRNAs差异分析[J]. 南方水产科学, 2022, 18(3): 86-93. DOI: 10.12131/20210124
引用本文: 林枫, 贾若南, 王法祥, 许强华. 低氧胁迫下斑马鱼鳃microRNAs差异分析[J]. 南方水产科学, 2022, 18(3): 86-93. DOI: 10.12131/20210124
LIN Feng, JIA Ruonan, WANG Faxiang, XU Qianghua. Differential analysis of microRNAs in zebrafish gills under hypoxic stress[J]. South China Fisheries Science, 2022, 18(3): 86-93. DOI: 10.12131/20210124
Citation: LIN Feng, JIA Ruonan, WANG Faxiang, XU Qianghua. Differential analysis of microRNAs in zebrafish gills under hypoxic stress[J]. South China Fisheries Science, 2022, 18(3): 86-93. DOI: 10.12131/20210124

低氧胁迫下斑马鱼鳃microRNAs差异分析

Differential analysis of microRNAs in zebrafish gills under hypoxic stress

  • 摘要: 为研究microRNAs (miRNAs) 应对低氧胁迫的生物学功能,对低氧胁迫和常氧条件下斑马鱼 (Danio rerio) 鳃组织进行高通量miRNAs测序,分析了低氧胁迫与常氧条件下斑马鱼鳃中miRNAs的表达差异。结果表明,低氧胁迫和常氧条件下,斑马鱼鳃中共有15个miRNAs呈显著差异表达,其中13个miRNAs在低氧胁迫斑马鱼鳃中的表达量显著上调,2个miRNAs表达量显著下调。对miRNAs测序和斑马鱼鳃转录组进行关联分析,针对前期筛选获得的低氧胁迫与常氧条件下显著差异表达的28个热休克蛋白基因进行靶基因预测,结果显示,低氧胁迫下显著低表达的miR-455-3p同时靶向提高热休克蛋白基因hspa14和dnajb6b的表达,以增强对低氧的适应能力。另外,低氧胁迫下显著高表达的miR-194a和miR-155可以分别靶向5个热休克蛋白基因 (hspa12a, dnajc5aa, hspb7, hsp70.3, dnajb2) 和4个热休克蛋白基因 (hspa12a, hspg2, hspa13, dnajb2) 来调控斑马鱼对低氧环境的适应。

     

    Abstract: In order to study the biological function of microRNAs (miRNAs) in response to hypoxic stress, we perfomed high-throughput miRNAs sequencing in the gill tissues of zebrafish (Danio rerio) under hypoxic stress and normoxic condition, and analyzed the differences in miRNAs expression in the gill tissues of zebrafish. The results show that a total of 15 miRNAs are significantly differentially expressed in the gills of zebrafish under hypoxic stress and normoxic condition, among which 13 miRNAs were up-regulated significantly and 2 miRNAs were down-regulated significantly. Moreover, we performed a correlation analysis on miRNAs sequencing and zebrafish gill transcriptome, and predicted the target genes for 28 heat shock protein genes that were significantly differentially expressed under hypoxic stress and normoxic condition screened in the previous stage. The result shows that miR-455-3p, which was expressed significantly low under hypoxic stress, targeted to increase the expression of hspa14 and dnajb6b and enhance the adaptability to hypoxic stress. In addition, miR-194a and miR-155, which were highly expressed under hypoxic stress, targeted five heat shock protein genes (hspa12a, dnajc5aa, hspb7, hsp70.3, dnajb2) and four heat shock protein genes (hspa12a, hspg2, hspa13, dnajb2) to regulate zebrafish's adaptation to hypoxic condition.

     

/

返回文章
返回