[1] |
姚雪梅. 热带海参在我国南方沿海地区的增养殖前景[J]. 水产文摘, 2004(4): 2-5.
|
[2] |
霍达. 玉足海参人工繁育及海藻糖酶基因的克隆与表达分析[D]. 北京: 中国科学院大学, 2018: 25-26.
|
[3] |
GIANASI B L, HAMEL J, MERCIER A. Morphometric and behavioural changes in the early life stages of the sea cucumber Cucumaria frondosa[J]. Aquaculture, 2018, 490: 5-18. doi: 10.1016/j.aquaculture.2018.02.017
|
[4] |
HUANG W, HUO D, YU Z, et al. Spawning, larval development and juvenile growth of the tropical sea cucumber Holothuria leucospilota[J]. Aquaculture, 2018, 488: 22-29. doi: 10.1016/j.aquaculture.2018.01.013
|
[5] |
薛英楼, 高菲, 许强, 等. 黑海参 (Holothuria atra) 对环境沉积物的摄食选择及消化系统功能适应性研究[J]. 海洋与湖沼, 2019, 50(5): 1070-1079. doi: 10.11693/hyhz20190200033
|
[6] |
DRUMM D J, LONERAGAN N R. Reproductive biology of Holothuria leucospilota in the Cook Islands and the implications of traditional fishing of gonads on the population[J]. New Zeal J Mar Freshw, 2005, 39(1): 141-156. doi: 10.1080/00288330.2005.9517297
|
[7] |
WIBOWO J T, KELLERMANN M Y, VERSLUIS D, et al. Biotechnological potential of bacteria isolated from the sea cucumber Holothuria leucospilota and Stichopus vastus from lampung, Indonesia[J]. Mar Drug, 2019, 17(11): 635. doi: 10.3390/md17110635
|
[8] |
MALAIWONG N, CHALORAK P, JATTUJAN P, et al. Anti-Parkinson activity of bioactive substances extracted from Holothuria leucospilota[J]. Biomed Pharmacother, 2019, 109: 1967-1977. doi: 10.1016/j.biopha.2018.11.063
|
[9] |
CEESAY A, NOR SHAMSUDIN M, ALIYU-PAIKO M, et al. Extraction and characterization of organ components of the Malaysian sea cucumber Holothuria leucospilota yielded bioactives exhibiting diverse properties[J]. Biomed Res Int, 2019: 2640684. doi: 10.1155/2019/2640684
|
[10] |
SROYRAYA M, KAEWPHALUG W, ANANTACHOKE N, et al. Saponins enriched in the epidermal layer of Holothuria leucospilota body wall[J]. Microsc Res Tech, 2018, 81(10): 1182-1190. doi: 10.1002/jemt.23115
|
[11] |
FOROUTAN-RAD M, KHADEMVATAN S, SAKI J, et al. Holothuria Leucospilota extract induces apoptosis in Leishmania major promastigotes[J]. Iran J Parasitol, 2016, 11(3): 339-349.
|
[12] |
GUO K, SU L, WANG Y, et al. Antioxidant and anti-aging effects of a sea cucumber protein hydrolyzate and bioinformatic characterization of its composing peptides[J]. Food Funct, 2020, 11(6): 5004-5016. doi: 10.1039/D0FO00560F
|
[13] |
GHADIRI M, KAZEMI S, HEIDARI B, et al. Bioactivity of aqueous and organic extracts of sea cucumber Holothuria leucospilota (Brandt 1835) on pathogenic Candida and Streptococci[J]. Int Aquat Res, 2018, 10(1): 31-43. doi: 10.1007/s40071-017-0186-x
|
[14] |
YUAN Y, LIU Q, ZHAO F, et al. Holothuria leucospilota polysaccharides ameliorate hyperlipidemia in high-fat diet-induced rats via short-chain fatty acids production and lipid metabolism regulation[J]. Int J Mol Sci, 2019, 20(19): 4738. doi: 10.3390/ijms20194738
|
[15] |
YUAN Y, LI C, ZHENG Q, et al. Effect of simulated gastrointestinal digestion in vitro on the antioxidant activity, molecular weight and microstructure of polysaccharides from a tropical sea cucumber (Holothuria leucospilota)[J]. Food Hydrocolloid, 2019, 89: 735-741. doi: 10.1016/j.foodhyd.2018.11.040
|
[16] |
ZHAO F, LIU Q, CAO J, et al. A sea cucumber (Holothuria leucospilota) polysaccharide improves the gut microbiome to alleviate the symptoms of type 2 diabetes mellitus in goto-kakizaki rats[J]. Food Chem Toxicol, 2020, 135: 110886. doi: 10.1016/j.fct.2019.110886
|
[17] |
韩华, 易杨华, 张文, 等. 玉足海参中具有细胞毒活性的三萜皂苷成分研究[J]. 中国药学杂志, 2012, 47(15): 1194-1198.
|
[18] |
杨蕊, 吴开畅, 于刚, 等. 养殖模式对方斑东风螺生长及主要环境因子的影响[J]. 水产科学, 2019, 38(5): 610-615.
|
[19] |
ZAMORA L, YUAN X, CARTON A, et al. Role of deposit-feeding sea cucumbers in integrated multitrophic aquaculture: progress, problems, potential and future challenges[J]. Rev Aquac, 2018, 10(1): 57-74. doi: 10.1111/raq.12147
|
[20] |
HAN Q, KEESING J K, LIU D. A review of sea cucumber aquaculture, ranching, and stock enhancement in China[J]. Rev Fish Sci Aquac, 2016, 24(4): 326-341. doi: 10.1080/23308249.2016.1193472
|
[21] |
CHIEU H D, SUWANSA-ARD S, ABRAMOV T, et al. In vitro oocyte maturation by radial nerve extract and early development of the black sea cucumber (Holothuria leucospilota)[J]. Aquaculture, 2018, 495: 247-254. doi: 10.1016/j.aquaculture.2018.05.032
|
[22] |
BAKER-MÉDARD M, OHL K N. Sea cucumber management strategies: challenges and opportunities in a developing country context[J]. Environ Conserv, 2019, 46(4): 267-277. doi: 10.1017/S0376892919000183
|
[23] |
CONAND C. Tropical sea cucumber fisheries: changes during the last decade[J]. Mar Pollut Bull, 2018, 133: 590-594. doi: 10.1016/j.marpolbul.2018.05.014
|
[24] |
LAGUERRE H, RAYMOND G, PLAN P, et al. First description of embryonic and larval development, juvenile growth of the black sea-cucumber Holothuria forskali (Echinodermata: Holothuroidea), a new species for aquaculture in the north-eastern Atlantic[J]. Aquaculture, 2020, 521: 734961. doi: 10.1016/j.aquaculture.2020.734961
|
[25] |
GONZÁLEZ-WANGÜEMERT M, DOMÍNGUEZ-GODINO J A, CÁNOVAS F. The fast development of sea cucumber fisheries in the Mediterranean and NE Atlantic waters: from a new marine resource to its over-exploitation[J]. Ocean Coast Manag, 2018, 151: 165-177. doi: 10.1016/j.ocecoaman.2017.10.002
|
[26] |
CHIEU H D, TURNER L, SMITH M K, et al. Aquaculture breeding enhancement: maturation and spawning in sea cucumbers using a recombinant relaxin-like gonad-stimulating peptide[J]. Front Genet, 2019, 10: 77. doi: 10.3389/fgene.2019.00077
|
[27] |
CHENG C, WU F, REN C, et al. Aquaculture of the tropical sea cucumber, Stichopus monotuberculatus: induced spawning, detailed records of gonadal and embryonic development, and improvements in larval breeding by digestive enzyme supply in diet[J]. Aquaculture, 2021, 540: 736690. doi: 10.1016/j.aquaculture.2021.736690
|
[28] |
MILITZ T A, LEINI E, DUY N D Q, et al. Successful large-scale hatchery culture of sandfish (Holothuria scabra) using micro-algae concentrates as a larval food source[J]. Aquac Rep, 2018, 9: 25-30.
|
[29] |
ARSAD N A, OTHMAN R, SHALEH S R M, et al. Effects of physicochemical parameters on the reproductive pattern of sea cucumber Holothuria scabra in Sabah[J]. Songklanakarin J Sci Technol, 2020, 42(1): 109-116.
|
[30] |
JU B, JIANG A, XING R, et al. Optimization of conditions for an integrated multi-trophic aquaculture system consisting of sea cucumber Apostichopus japonicus and ascidian Styela clava[J]. Aquac Int, 2017, 25(1): 265-286. doi: 10.1007/s10499-016-0027-8
|
[31] |
TOLON T. Effect of salinity on growth and survival of the juvenile sea cucumbers Holothuria tubulosa (Gmelin, 1788) and Holothuria poli (Delle Chiaje, 1923)[J]. Fresenius Environ Bull, 2017, 26(6): 3930-3935.
|
[32] |
YU Z, QI Z, HU C, et al. Effects of salinity on ingestion, oxygen consumption and ammonium excretion rates of the sea cucumber Holothuria leucospilota[J]. Aquac Res, 2013, 44(11): 1760-1767.
|
[33] |
MAGCANTA M L M, SORNITO M B, ESPADERO A D A, et al. Growth, survival and behavior of early juvenile sandfish Holothuria scabra (Jaeger, 1883) in response to feed types and salinity levels under laboratory conditions[J]. Philipp J Sci, 2021, 150(5): 871-887.
|
[34] |
WANG F, YANG H, GAO F, et al. Effects of acute temperature or salinity stress on the immune response in sea cucumber, Apostichopus japonicus[J]. Comp Biochem Physiol A, 2008, 151(4): 491-498. doi: 10.1016/j.cbpa.2008.06.024
|
[35] |
MENG X, DONG Y, DONG S, et al. Mortality of the sea cucumber, Apostichopus japonicus Selenka, exposed to acute salinity decrease and related physiological responses: osmoregulation and heat shock protein expression[J]. Aquaculture, 2011, 316(1/2/3/4): 88-92.
|
[36] |
DONG Y, DONG S, JI T. Effect of different thermal regimes on growth and physiological performance of the sea cucumber Apostichopus japonicus Selenka[J]. Aquaculture, 2008, 275(1/2/3/4): 329-334.
|
[37] |
SHI W, LI Y, DONG Y, et al. The effect of ocean acidification on the enzyme activity of Apostichopus japonicus[J]. Fish Shellfish Immun, 2021, 108: 1-6. doi: 10.1016/j.fsi.2020.11.004
|
[38] |
LI L, LI Q. Effects of stocking density, temperature, and salinity on larval survival and growth of the red race of the sea cucumber Apostichopus japonicus (Selenka)[J]. Aquac Int, 2010, 18(3): 447-460. doi: 10.1007/s10499-009-9256-4
|
[39] |
SARI B M S, GIGIH S W, JHON H H, et al. Effect of salinity on survival, growth and immunity rate of juvenile sea cucumber (Holothuria scabra)[J]. Biotropia-Southeast Asian J Trop Biol, 2019, 26(3): 163-171.
|
[40] |
DABBAGH A, SEDAGHAT M R, RAMESHI H, et al. Breeding and larval rearing of the sea cucumber Holothuria leucospilota Brandt (Holothuria vegabunda Selenka) from the northern Persian Gulf, Iran[J]. SPC Beche-de-mer Info Bull, 2011, 31: 35-38.
|
[41] |
SOLIMAN T, YAMAZAKI Y, NIIYAMA H, et al. Spontaneous captive breeding and larval development in the green and red variants of the Japanese sea cucumber Apostichopus japonicus (Selenka 1867)[J]. Aquac Res, 2013, 44(5): 738-746. doi: 10.1111/j.1365-2109.2011.03078.x
|
[42] |
PETERS-DIDIER J, SEWELL M A. The role of the hyaline spheres in sea cucumber metamorphosis: lipid storage via transport cells in the blastocoel[J]. EvoDevo, 2019, 10(1): 1-12. doi: 10.1186/s13227-018-0114-1
|
[43] |
ZACARÍAS-SOTO M, OLVERA-NOVOA M A, PENSAMIENTO-VILLARAUZ S, et al. Spawning and larval development of the four-sided sea cucumber, Isostichopus badionotus (Selenka 1867), under controlled conditions[J]. J World Aquac Soc, 2013, 44(5): 694-705. doi: 10.1111/jwas.12061
|
[44] |
RAMOFAFIA C, BYRNE M, BATTAGLENE S C. Development of three commercial sea cucumbers, Holothuria scabra, H. fuscogilva and Actinopyga mauritiana: larval structure and growth[J]. Mar Freshw Res, 2003, 54(5): 657-667. doi: 10.1071/MF02145
|
[45] |
DUY N D Q, FRANCIS D S, SOUTHGATE P C. Development of hyaline spheres in late auriculariae of sandfish, Holothuria scabra: is it a reliable indicator of subsequent performance?[J]. Aquaculture, 2016, 465: 144-151. doi: 10.1016/j.aquaculture.2016.09.003
|