留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电子鼻结合GC-MS分析不同干燥方式对罗非鱼片挥发性风味成分的影响

罗静 李敏 张莹 刘岩 关志强

罗静, 李敏, 张莹, 刘岩, 关志强. 电子鼻结合GC-MS分析不同干燥方式对罗非鱼片挥发性风味成分的影响[J]. 南方水产科学. doi: 10.12131/20210098
引用本文: 罗静, 李敏, 张莹, 刘岩, 关志强. 电子鼻结合GC-MS分析不同干燥方式对罗非鱼片挥发性风味成分的影响[J]. 南方水产科学. doi: 10.12131/20210098
LUO Jing, LI Min, ZHANG Ying, LIU Yan, GUAN Zhiqiang. Effect of different drying methods on volatile components of tilapia fillets analyzed by electronic nose combined with GC-MS[J]. South China Fisheries Science. doi: 10.12131/20210098
Citation: LUO Jing, LI Min, ZHANG Ying, LIU Yan, GUAN Zhiqiang. Effect of different drying methods on volatile components of tilapia fillets analyzed by electronic nose combined with GC-MS[J]. South China Fisheries Science. doi: 10.12131/20210098

电子鼻结合GC-MS分析不同干燥方式对罗非鱼片挥发性风味成分的影响

doi: 10.12131/20210098
基金项目: 广东省自然科学基金项目 (2015A030313613)
详细信息
    作者简介:

    罗静:罗 静 (1995—),女,硕士研究生,研究方向为水产品冷冻冷藏及干燥贮藏加工。E-mail: 2629082063@qq.com

    通讯作者:

    李 敏 (1967—),女,硕士,教授,从事水产品加工及贮藏工艺研究。E-mail: lim@gdou.edu.cn

  • 中图分类号: S 986.1

Effect of different drying methods on volatile components of tilapia fillets analyzed by electronic nose combined with GC-MS

  • 摘要: 为了了解不同干燥方式对罗非鱼片挥发性风味物质的影响,为罗非鱼片加工提供参考依据,该研究采用电子鼻和顶空固相微萃取结合气相色谱-质谱联用技术 (HS-SPME-GC-MS) 分析了经超声波辅助聚葡萄糖渗透热泵干燥 (UAPOHPD)、热泵干燥 (HPD)、超声波辅助聚葡萄糖渗透真空冷冻-热泵联合干燥 (UAPOVFHPCD) 和真空冷冻干燥 (VFD) 所得罗非鱼片干制品的挥发性风味物质,并对不同干制品的风味物质进行主成分分析,利用相对气味活度值确定不同干制品的关键风味成分。结果表明,电子鼻能较好地区分不同罗非鱼干制品。其中,新鲜罗非鱼片有3种关键风味成分,UAPOVFHPCD制品有4种关键风味成分,而UAPOHPD、HPD和VFD制品均有5种关键风味成分。HPD制品挥发性气味物质的综合得分最高,其后依次为UAPOHPD制品、VFD制品、UAPOVFHPCD制品。
  • 图  1  不同干制罗非鱼片挥发性风物质主成分分析图

    Figure  1.  PCA diagram of volatile flavor compounds in different dried tilapia fillets

    表  1  不同干燥方式对罗非鱼片挥发性风味物质种类及相对含量的影响

    Table  1.   Effect of different drying methods on types and relative contents of volatile flavor compounds in tilapia fillets

    类别
    Category
    新鲜鱼肉
    FS
    超声波辅助聚葡萄糖渗透热泵干燥
    UAPOHPD
    热泵干燥
    HPD
    数量
    Amount
    相对含量
    Relative amount/%
    数量
    Amount
    相对含量
    Relative amount/%
    数量
    Amount
    相对含量
    Relative amount/%
    酮 Ketone 1 0.273 5 5.801 5 10.528
    醇 Alcohol 5 4.862 15 6.024 20 9.556
    醛类 Aldehydes 4 1.346 5 3.553 2 1.547
    酯 Esters 1 0.453 4 2.925 9 5.834
    醚 Ethers 4 2.202 2 1.022
    烃类 Hydrocarbon 21 64.031 44 54.568 44 43.483
    其他类 Others 7 12.722 11 24.927 8 28.093
    类别
    Category
    超声波辅助聚葡萄糖渗透真空冷冻-热泵联合干燥
    UAPOVFHPCD
    真空冷冻干燥
    VFD
    数量
    Amount
    相对含量
    Relative amount/%
    数量
    Amount
    相对含量
    Relative amount/%
    酮 Ketone 2 1.354 4 2.457
    醇 Alcohol 18 13.984 12 8.061
    醛类 Aldehydes 3 8.215 5 6.188
    酯 Esters 4 1.721 4 0.345
    醚 Ethers 3 2.359 1 0.185
    烃类 Hydrocarbon 26 67.876 20 70.101
    其他类 Others 6 4.433 3 12.662
    注:−. 表示未检测到,下同 Note: −. Not detected; same as below
    下载: 导出CSV

    表  2  5种不同罗非鱼片挥发性风味物质的相对气味活度值

    Table  2.   ROAVS of volatile flavor compounds in five different tilapia fillets

    化合物
    Compound
    阈值
    Threshold value/(μg∙kg−1)
    相对气味活度值
    Relative odor activity value
    超声波辅助聚葡萄糖
    渗透热泵干燥
    UAPOHPD
    热泵干燥
    HPD
    超声波辅助聚葡萄糖
    渗透真空冷冻-热泵
    联合干燥
    UAPOVFHPCD
    真空冷冻干燥
    VFD
    新鲜鱼肉
    FS
    3-羟基-2-丁酮 C4H8O2 55.000 2.917 1.205 0.487 1.0110
    2-壬酮 C9H18O 41.000~82.000 0.268~0.535 0.160~0.319 0.024~0.047
    1-辛烯-3-醇 C8H16O 1.500 32.850 100.000
    十二醇 C12H26O 16.000 2.789 5.443 1.462 3.038 4.237
    植物醇 C20H40O 640.000 0.002
    反式-橙花叔醇 C15H26O 250.000 0.0181 0.003
    1-癸醇 C10H21OH 775.000~2800.000 0.001-0.005
    2-乙基-1-丁醇 C6H14O 75.200 0.028
    2-乙基己醇 C8H18O 25482.200 0.004
    1-辛醇 C8H18O 125.000 0.475
    壬醛 C9H18O 1.000 100.000 100.000 100.000 79.689
    癸醛 C10H20O 0.100~2.000 3.542~70.845 3.727~74.531 25.358
    庚醛 C7H14O 3.000 25.052
    异戊醛 C5H10O 1.1.000 1.193 100.000
    正十四烷醛 C14H28O 110.000 0.254
    十五醛 C15H30O 1000.000 0.014
    异丁酸异戊酯 C9H18O2 87.000~430.000 0.160~0.788
    乙酸异丁酯 C6H12O2 25.000 2.851
    十四烷 C14H30 1000.000 0.149 0.300 0.137 0.166
    十一烷 C11H24 2140.000 0.1854 0.013 0.202 0.056
    1-十四碳烯 C14H28 60.000 0.0884
    L-石竹烯 C15H24 64.000 0.111 0.713 0.144
    2,6-二叔丁基对甲酚 C15H24O 1000.000 0.036 0.006 0.031
    2,4-二叔丁基苯酚 C14H22O 500.000 0.002
    百里酚 C10H14O 1700.000 0.008
    1,2-二甲苯 C8H10 450.230 0.182 0.076
    对二甲苯 C8H10 1000 0.093 0.014
    乙基苯 C8H10 29.000 0.107
    2,6-二甲基吡嗪 C6H8N2 200.000 0.255 0 3.382
    2,5-二甲基吡嗪 C6H8N2 1 800.000 0.001 0.008
    下载: 导出CSV

    表  3  主成分的特征值及贡献率

    Table  3.   Eigenvalues and contribution rate of principal components

    主成分
    Principal
    component
    特征值
    Eigenvalue
    贡献率
    Contribution
    rate/%
    累计贡献率
    Cumulative
    contribution
    rate/%
    PC13.98966.48466.484
    PC21.31621.93588.419
    PC30.69511.581100.000
    下载: 导出CSV

    表  4  主成分的特征向量与载荷矩阵

    Table  4.   Eigenvectors and loading matrix of principal components

    类别
    Category
    主成分1
    PC1
    主成分2
    PC2
    主成分3
    PC3
    特征向量
    Feature vectors
    载荷量
    Amount of load
    特征向量
    Feature vectors
    载荷量
    Amount of load
    特征向量
    Feature vectors
    载荷量
    Amount of load
    酮类 Ketone 0.485 0.969 0.151 0.173 0.212 0.177
    醇类 Alcohol −0.291 −0.581 0.554 0.636 0.608 0.507
    醛类 Aldehydes −0.501 −1.000 0.014 0.016 −0.004 −0.003
    酯类 Esters 0.421 0.841 0.439 0.504 0.236 0.197
    醚类 Ethers −0.093 −0.185 0.688 0.789 −0.703 −0.586
    其他类 Others 0.494 0.986 −0.053 −0.061 −0.187 −0.156
    下载: 导出CSV

    表  5  标准化主成分综合得分

    Table  5.   Comprehensive scores of standardized principal components

    干燥方式
    Drying method
    F1F2F3F排序
    Sorting
    超声波辅助聚葡萄糖渗透热泵干燥 UAPOHPD1.2670.350−0.9910.8042
    热泵干燥 HPD2.2800.4660.7371.7031
    超声波辅助聚葡萄糖渗透真空冷冻-热泵联合干燥 UAPOVFPCD−2.2481.1240.127−1.2334
    真空冷冻干燥 VFD−1.175−1.1280.810−0.9353
    下载: 导出CSV
  • [1] WANG Q, LIU B, CAO J, et al. The impacts of vacuum microwave drying on osmosis dehydration of tilapia fillets[J]. J Food Process Eng, 2019, 42(1): e12956.1-e12956.7.
    [2] DUAN Z H, JIANG L N, WANG J L, et al. Drying and quality characteristics of tilapia fish fillets dried with hot air-microwave heating[J]. Food Bioprod Process, 2011, 89(4): 472-476. doi: 10.1016/j.fbp.2010.11.005
    [3] KITUU G M, SHITANDA D, KANALI C, et al. Thin layer drying model for simulating the drying of tilapia fish (Oreochromis niloticus) in a solar tunnel dryer[J]. J Food Eng, 2010, 98(3): 325-331. doi: 10.1016/j.jfoodeng.2010.01.009
    [4] LI M, WU Y Y, GUAN Z Q. Effect of physical osmosis methods on quality of tilapia fillets processed by heat pump drying[J]. Pol J Food Nutr Sci, 2017, 67(2): 145-150. doi: 10.1515/pjfns-2016-0016
    [5] 方嘉沁, 韩舜羽, 王凤娇, 等. 莲子的营养成分及其在食品工业中的加工研究进展[J]. 农产品加工, 2019(6): 72-75.
    [6] LUO J, LI M, ZHANG Y, et al. The low-field NMR studies the change in cellular water in tilapia fillet tissue during different drying conditions[J]. Food Sci Nutr, 2021, 00: 1-14.
    [7] BENET I, GUÀRDIA M D, IBA ÑEZ C, et al. Analysis of SPME or SBSE extracted volatile compounds from cooked cured pork ham differing in intramuscular fat profiles[J]. LWT-Food Sci Technol, 2015, 60(1): 393-399. doi: 10.1016/j.lwt.2014.08.016
    [8] HANSEN T, PETERSEN M A, BYRNE D V. Sensory based quality control utilising an electronic nose and GC-MS analyses to predict end-product quality from raw materials[J]. Meat Sci, 2005, 69(4): 621-634. doi: 10.1016/j.meatsci.2003.11.024
    [9] 蔡秋杏, 赵永强, 辛少平. 基于电子鼻与HS-SPME-GC-MS技术分析不同处理方式腌干带鱼挥发性风味成分[J]. 水产学报, 2016, 40(12).
    [10] FRATINI G, LOIS S, PAZOS M, et al. Volatile profile of Atlantic shellfish species by HS-SPME GC/MS[J]. Food Res Int, 2012, 48(2): 856-865. doi: 10.1016/j.foodres.2012.06.033
    [11] LEMA N L D, BELLINCONTRO A, MENCARELLI F, et al. Use of electronic nose, validated by GC-MS, to establish the optimum off-vine dehydration time of wine grapes[J]. Food Chem, 2012, 130(2): 447-452. doi: 10.1016/j.foodchem.2011.07.058
    [12] TIKK K, HAUGEN J E, ANDERSEN H J, et al. Monitoring of warmed-over flavour in pork using the electronic nose–correlation to sensory attributes and secondary lipid oxidation products[J]. Meat Sci, 2008, 80(4): 1254-1263. doi: 10.1016/j.meatsci.2008.05.040
    [13] 马琦, 伯继芳, 冯莉, 等. GC-MS结合电子鼻分析干燥方式对杏鲍菇挥发性风味成分的影响[J]. 食品科学, 2019, 40(14): 276-282. doi: 10.7506/spkx1002-6630-20180904-046
    [14] EDIRISINGHE R K, GRAFFHAM A J, TAYLOR S J. Characterisation of the volatiles of yellowfin tuna (Thunnus albacares) during storage by solid phase microextraction and GC-MS and their relationship to fish quality parameters[J]. Int J Food Sci Tech, 2007, 42(10): 1139-1147. doi: 10.1111/j.1365-2621.2006.01224.x
    [15] 荣建华, 熊诗, 张亮子, 等. 基于电子鼻和SPME-GC-MS联用分析脆肉鲩鱼肉的挥发性风味成分[J]. 食品科学, 2015, 36(10): 124-128. doi: 10.7506/spkx1002-6630-201510025
    [16] WELKE J E, ZANUS M, LAZZAROTTO M, et al. Quantitative analysis of headspace volatile compounds using comprehensive two-dimensional gas chromatography and their contribution to the aroma of Chardonnay wine[J]. Food Res Int, 2014, 59: 85-99. doi: 10.1016/j.foodres.2014.02.002
    [17] TCHABO W, MA Y, KWAW E, et al. Aroma profile and sensory characteristics of a sulfur dioxide-free mulberry (Morus nigra) wine subjected to non-thermal accelerating aging techniques[J]. Food Chem, 2017, 232: 89-97. doi: 10.1016/j.foodchem.2017.03.160
    [18] 张哲奇, 臧明伍, 张凯华, 等. 熟制高压灭菌和复热对粉蒸肉挥发性风味物质的影响[J]. 食品科学, 2019: 10.
    [19] 罗静, 李敏, 关志强. 干燥工艺对罗非鱼片品质的影响[J]. 南方农业学报, 2020, 51(07): 1764-1775. doi: 10.3969/j.issn.2095-1191.2020.07.032
    [20] 李官丽, 聂辉, 苏可珍, 黎小椿, 黄双全, 伍淑婕, 罗杨合. 基于感官评价和电子鼻分析不同蒸煮时间荸荠挥发性风味物质[J]. 食品工业科技, 2020, 41(15): 1-7+14.
    [21] 顾赛麒, 王锡昌, 陶宁萍, 张晶晶, 吴娜. 基于固相微萃取-气-质联用法和电子鼻法检测锯缘青蟹挥发性风味物[J]. 食品工业科技, 2012, 33(14): 140-145+156.
    [22] 丁丹, 王松磊, 罗瑞明, 等. 基于SPME-GC-MS分析不同烤制时间新疆烤羊腿表层及内层挥发性化合物[J]. 食品科学, 2021, 42(02): 227-234.
    [23] 王丹, 丹彤, 孙天松, 等. SPME-GC-MS结合ROAV分析单菌及复配发酵牛乳中关键性风味物质[J]. 食品科学, 2017, 38(08): 145-152.
    [24] 荣建华, 熊诗, 张亮子, 等. 基于电子鼻和SPME-GC-MS联用分析脆肉鲩鱼肉的挥发性风味成分[J]. 食品科学, 2015, 36(10): 124-128. doi: 10.7506/spkx1002-6630-201510025
    [25] MELUCCI D, BENDINI A, TESINI F, et al. Rapid direct analysis to discriminate geographic origin of extra virgin olive oils by flash gas chromatography electronic nose and chemometrics[J]. Food Chem, 2016, 204: 263-273. doi: 10.1016/j.foodchem.2016.02.131
    [26] ENGELSEN S, JENSEN M, PEDERSEN H, et al. NMR-baking and multivariate prediction of instrumental texture parameters in bread[J]. J Cereal Sci, 2001, 33(1): 59-69. doi: 10.1006/jcrs.2000.0343
    [27] 里奥·范海默特. 化合物嗅觉阈值汇编[M]. 北京: 中国科学技术出版社, 2018: 5.
    [28] REFSGAARD H H, HAAHR A M, JENSEN B. Isolation and quantification of volatiles in fish by dynamic headspace sampling and mass spectrometry[J]. J Agric Food Chem, 1999, 47(3): 1114-1118. doi: 10.1021/jf9807770
    [29] IGLESIAS J, MEDINA I. Solid-phase microextraction method for the determination of volatile compounds associated to oxidation of fish muscle[J]. J Chromatogr A, 2008, 1192(1): 9-16. doi: 10.1016/j.chroma.2008.03.028
    [30] 翁丽萍, 王宏海, 卢春霞, 等. SPME-GC-MS法鉴定养殖大黄鱼主要挥发性风味物质的条件优化[J]. 中国食品学报, 2012, 12(9): 209-215.
    [31] 刁玉段, 张晶晶, 史珊珊, 等. 致死方式对草鱼肉挥发性成分和脂肪氧合酶活性的影响[J]. 食品科学, 2016, 37(18): 64-70. doi: 10.7506/spkx1002-6630-201618011
    [32] KANOKRUANGRONG S, BIRCH J, BEKHIT E. Processing effects on meat flavor-ScienceDirect[J]. Enc Food Chem, 2019: 302-308.
    [33] GRABEZ V, BJELANOVIC M, ROHLOFF J, et al. The relationship between volatile compounds, metabolites and sensory attributes: a case study using lamb and sheep meat[J]. Small Rumin Res, 2019, 181: 12-20. doi: 10.1016/j.smallrumres.2019.09.022
    [34] 杨文鸽, 邓思瑶, 吕梁玉, 等. 电子束辐照前处理对梅鱼鱼糜凝胶挥发性成分的影响[J]. 农业机械学报, 2017, 48(09): 344-351.
    [35] JOSEPHSON D B, LINDSAY R C, STUIBER D A. Enzymic hydroperoxide initiated effects in fresh fish[J]. J Food Sci, 1987, 52(3): 596-600. doi: 10.1111/j.1365-2621.1987.tb06683.x
    [36] 刘志皋. 食品营养学[M]. 北京: 中国轻工业出版社, 2000: 1-30.
  • 20210098附录1.pdf
  • 加载中
计量
  • 文章访问数:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-27
  • 修回日期:  2021-07-03
  • 网络出版日期:  2021-08-13

目录

    /

    返回文章
    返回