留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

系泊方式对深水养殖网箱动力特性影响研究

隋留洋 黄小华 刘海阳 胡昱 袁太平 王绍敏 陶启友

隋留洋, 黄小华, 刘海阳, 胡昱, 袁太平, 王绍敏, 陶启友. 系泊方式对深水养殖网箱动力特性影响研究[J]. 南方水产科学. doi: 10.12131/20210049
引用本文: 隋留洋, 黄小华, 刘海阳, 胡昱, 袁太平, 王绍敏, 陶启友. 系泊方式对深水养殖网箱动力特性影响研究[J]. 南方水产科学. doi: 10.12131/20210049
Liuyang SUI, Xiaohua HUANG, Haiyang LIU, Yu HU, Taiping YUAN, Shaomin WANG, Qiyou TAO. Effects of mooring pattern on dynamic characteristics of a deep-water aquaculture cage[J]. South China Fisheries Science. doi: 10.12131/20210049
Citation: Liuyang SUI, Xiaohua HUANG, Haiyang LIU, Yu HU, Taiping YUAN, Shaomin WANG, Qiyou TAO. Effects of mooring pattern on dynamic characteristics of a deep-water aquaculture cage[J]. South China Fisheries Science. doi: 10.12131/20210049

系泊方式对深水养殖网箱动力特性影响研究

doi: 10.12131/20210049
基金项目: 国家自然科学基金项目 (31772897, 31902424);广东省现代农业产业技术体系创新团队建设专项资金 (2019KJ143);中国水产科学研究院基本科研业务费 (2020TD77);中国水产科学研究院南海水产研究所中央级公益性科研院所基本科研业务费专项资金资助 (2021SD10)
详细信息
    作者简介:

    隋留洋 (1995—),男,硕士研究生,研究方向为海洋养殖设施水动力学。E-mail: 18842632117@163.com

    通讯作者:

    黄小华 (1982—),男,硕士,研究员,从事渔业设施工程技术研究。E-mail: huangx-hua@163.com

  • 中图分类号: S 953.9

Effects of mooring pattern on dynamic characteristics of a deep-water aquaculture cage

  • 摘要: 针对一种三角形高密度聚乙烯深水养殖网箱,该研究基于有限元法建立了波浪流作用下网箱动力响应计算模型,并通过开展模型比尺1∶15的水池试验,分析比较了网箱在纯波、波流组合条件下动力响应的计算结果与试验数据,两者相对误差均在10%以内。在此基础上,考虑原型网箱海况数据,将波流要素值取为:波高 (H) 4~6 m、周期 (T) 9 s、流速 (v) 0.5~1.5 m·s−1,分析了单点系泊和多点系泊方式浮架变形以及网箱系泊力的情况,并进一步探讨了系泊方式对网箱运动特性的影响。结果表明,波流作用下,多点系泊布置时的系泊力峰值大于单点系泊情况,且随着流速和波高的增加,两者相差幅度增大;在大浪强流条件(H=6 m, T=9 s, v=1.5 m·s−1)下,多点系泊能在一定程度上降低浮架的变形;2种系泊方式对浮架的升沉影响极小,但多点系泊时浮架在x轴上的位移大于单点系泊时,两者峰值相差25.64%;单个周期内网衣平面轮廓图显示网衣的变形程度几乎一致。
  • 图  1  三角形深水养殖网箱

    Figure  1.  Scene of a triangular deep-water aquaculture cage

    图  2  三自由度质点

    Figure  2.  3-D buoy

    图  3  六自由度质点

    Figure  3.  6-D buoy

    图  4  单点系泊网箱模型试验布置图

    Figure  4.  Physical model configuration of SPM net cage

    图  5  纯波条件下网箱动力响应计算结果与试验值比较

    Figure  5.  Comparison of dynamic responses between calculated and measured results of net cage under pure waves

    图  6  波流条件下网箱锚绳力比较

    Figure  6.  Comparison of mooring force for net cage under waves and current

    图  7  不同系泊方式的网箱布置图

    上部水平线为海平面,下部水平线为海底

    Figure  7.  Layout of cage with different mooring systems

    The upper level is sea level and the lower level is the seabed.

    图  8  各工况下不同系泊方式的锚绳力峰值

    Figure  8.  Peak value of mooring force under different sea conditions

    图  9  锚绳力历时曲线 (H=6 m, v=1.0 m·s−1)

    Figure  9.  Time history of mooring force under wave height of 6 m and current velocity of 1.0 m·s−1

    图  10  浮架选定点位示意图

    Figure  10.  Different points of floating collar

    图  11  D处达到应力峰值时浮架的变形情况

    Figure  11.  Deformation of floating frame when stress peak reached at point D

    图  12  A点坐标xyz历时曲线

    Figure  12.  x, y and z duration curves of Point A

    图  13  D点坐标xyz历时曲线

    Figure  13.  x, y and z duration curves of Point D

    图  14  E点坐标xyz历时曲线

    Figure  14.  x, y and z duration curves of Point E

    图  15  一个波周期内网衣的xz面轮廓图

    v=1.5 m·s−1H=6 m,T=9 s

    Figure  15.  xz surface contour of net during a wave period

    表  1  网箱主要参数

    Table  1.   Parameters of net cage

    组件
    Component
    参数
    Parameter
    模型值
    Model value
    原型值
    Prototype value
    浮管
    Floating pipe
    直径
    Diameter/mm
    26.67 400
    壁厚
    Wall thickness/mm
    1.57 23.5
    形状
    Shape
    三角形 三角形
    长度
    Length/m
    1.33 20
    网衣
    Net
    网目
    Mesh size/mm
    45 45
    目脚直径
    Twine diameter/mm
    2 2
    高度
    Height/m
    0.4 6
    材料
    Material
    PE PE
    锚绳
    Mooring line
    长度
    Length/m
    4 60
    直径
    Diameter/mm
    2.67 40
    材料
    Material
    PE PE
    浮筒
    Buoy
    高度
    Height/m
    0.13 2
    直径
    Diameter/m
    0.1 1.5
    沉子
    Sinker
    质量
    Mass/g
    20×5.93 20×20000
    材料
    Material
    混凝土 混凝土
    下载: 导出CSV

    表  2  浮架各点处变形

    Table  2.   Deformation at different points of floating collar

    浮架点编号
    Point No.
    应力 Stress/MPa
    单点系泊 SPM多点系泊 MPM
    A 11.07 11.77
    B 3.44 2.93
    C 14.99 13.88
    D 19.50 18.01
    E 2.34 2.68
    F 2.11 3.03
    G 3.16 2.25
    H 7.37 3.71
    下载: 导出CSV
  • [1] 农业农村部渔业渔政管理局. 2019中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2019: 21-22.
    [2] LEE C, KIM Y, LEE G, et al. Dynamic simulation of a fish cage system subjected to currents and waves[J]. Ocean Engin, 2008, 35(14): 1521-1532.
    [3] HUANG C C, PAN J. Mooring line fatigue: a risk analysis for an SPM cage system[J]. Aquacult Engin, 2010, 42(1): 8-16. doi: 10.1016/j.aquaeng.2009.09.002
    [4] SHAINEE M, DECEW J, LEIRA B J, et al. Numerical simulation of a self-submersible SPM cage system in regular waves with following currents[J]. Aquacult Engin, 2013, 54: 29-37. doi: 10.1016/j.aquaeng.2012.10.007
    [5] FREDRIKSSON D W, DECEW J, TSUKROV I, et al. Development of large fish farm numerical modeling techniques with in situ mooring tension comparisons[J]. Aquacult Engin, 2007, 36(2): 137-148. doi: 10.1016/j.aquaeng.2006.10.001
    [6] ZHAO Y P, LI Y C, DONG G H, et al. Numerical simulation of hydrodynamic behaviors of gravity cage in current and waves[J]. Int J Offshore Polar Engin, 2009, 19(2): 97-107.
    [7] ZHAO Y P, GUI F K, XU T J, et al. Numerical analysis of dynamic behavior of a box-shaped net cage in pure waves and current[J]. Appl Ocean Res, 2013, 39: 158-167. doi: 10.1016/j.apor.2012.12.002
    [8] DECEW J, FREDRIKSSON D W, LADER P F, et al. Field measuremments of cage deformation using acoustic sensors[J]. Aquacult Engin, 2013, 57: 114-125. doi: 10.1016/j.aquaeng.2013.09.006
    [9] DING D L, LIU W H, OU C H. Use of non-linear regression to evaluate drag force and volume coefficient of structure of square cage[J]. Fish Sci, 2007, 73(6): 1249-1256.
    [10] XU T J, ZHAO Y P, DONG G H. Analysis of hydrodynamic behavior of a submersible net cage and mooring system in waves and current[J]. Appl Ocean Res, 2013, 42: 155-167. doi: 10.1016/j.apor.2013.05.007
    [11] MOE H, FREDHEIM A, HOPPERSTAD O S. Structural analysis of aquaculture net cages in current[J]. J Fluid Struct, 2010, 26(3): 503-516. doi: 10.1016/j.jfluidstructs.2010.01.007
    [12] LADER P F, ENERHAUG B. Experimental investigation of forces and geometry of a net cage in uniform flow[J]. IEEE J Oceanic Engin, 2005, 30(1): 79-84. doi: 10.1109/JOE.2004.841390
    [13] STRAND I M, SØRENSEN A J, VOLENT Z, et al. Experimental study of current forces and deformations on a half ellipsoidal closed flexible fish cage[J]. J Fluid Struct, 2016, 65: 108-120. doi: 10.1016/j.jfluidstructs.2016.05.011
    [14] 崔勇, 关长涛, 黄滨, 等. 波浪作用下双层网底鲆鲽网箱水动力特性的数值模拟[J]. 渔业科学进展, 2019, 40(6): 18-24.
    [15] SU B, KELASIDI E, FRANK K, et al. An integrated approach for monitoring structural deformation of aquaculture net cages[J]. Ocean Engin, 2021, 219: 108424. doi: 10.1016/j.oceaneng.2020.108424
    [16] 刘海阳, 胡昱, 黄小华, 等. 深水网箱浮架结构的失效及疲劳性能分析[J]. 农业工程学报, 2020, 36(3): 46-54. doi: 10.11975/j.issn.1002-6819.2020.03.006
    [17] CHEN Y Y, YANG B D, CHEN Y T. Applying a 3-D image measurement technique exploring the deformation of net cage under wave-current interaction[J]. Ocean Engin, 2019, 173: 823-834. doi: 10.1016/j.oceaneng.2019.01.017
    [18] TANG M F, XU T J, DONG G H, et al. Numerical simulation of the effects of fish behavior on flow dynamics around net cage[J]. Appl Ocean Res, 2017, 64: 258-280. doi: 10.1016/j.apor.2017.03.006
    [19] DONG G H, HAO S H, ZHAO Y P, et al. Elastic responses of a flotation ring in water waves[J]. J Fluid Struct, 2009, 26(1): 176-192.
    [20] FREDRIKSSON D W, DECEW J, TSUKROV I. Development of structural modeling techniques for evaluating HDPE plastic net pens used in marine aquaculture[J]. Ocean Engin, 2007, 34(16): 2124-2137. doi: 10.1016/j.oceaneng.2007.04.007
    [21] LI L, FU S X, XU Y W, et al. Dynamic responses of floating fish cage in waves and current[J]. Ocean Engin, 2013, 72: 297-303. doi: 10.1016/j.oceaneng.2013.07.004
    [22] HUANG C C, TANG H J, LIU J Y. Effects of waves and currents on gravity-type cages in the open sea[J]. Aquacult Engin, 2008, 38(2): 105-116. doi: 10.1016/j.aquaeng.2008.01.003
    [23] KRISTIANSEN T, FALTINSEN O M. Modelling of current loads on aquaculture net cages[J]. J Fluid Struct, 2012, 34: 218-235. doi: 10.1016/j.jfluidstructs.2012.04.001
    [24] KRISTIANSEN T, FALTINSEN O M. Experimental and numerical study of an aquaculture net cage with floater in waves and current[J]. J Fluid Struct, 2015, 54: 1-26. doi: 10.1016/j.jfluidstructs.2014.08.015
    [25] GOUDEY C A, LOVERICH G, KITE-POWELL H, et al. Mitigating the environmental effects of mariculture through single-point moorings (SPMs) and drifting cages[J]. ICES J Mar Sci, 2001, 58(2): 497-503. doi: 10.1006/jmsc.2000.1033
    [26] DECEW J, TSUKROV I, RISSO A, et al. Modeling of dynamic behavior of a single-point moored submersible fish cage under currents[J]. Aquacult Engin, 2010, 43(2): 38-45. doi: 10.1016/j.aquaeng.2010.05.002
    [27] 王绍敏, 袁太平, 陶启友, 等. 往复流作用下深水网箱的单锚腿系泊系统设计及效用评估[J]. 海洋渔业, 2019, 41(6): 725-735. doi: 10.3969/j.issn.1004-2490.2019.06.009
    [28] 梁家铭, 庞亮, 董胜. 新型网箱浮架系统水动力分析及系泊方式研究[J]. 中国海洋大学学报(自然科学版), 2021, 51(2): 119-126.
    [29] Orcina Ltd. OrcaFlex manual Version 10.0a[M]. Cumbria: Ulverston, 2015: 187-189.
    [30] 杨然哲, 朱克强, 荆彪, 等. 沉降式网箱群动力学分析[J]. 水动力学研究与进A辑, 2015, 30(1): 83-91.
    [31] HUANG X H, GUO G X, TAO Q Y, et al. Dynamic deformation of the floating collar of a net cage under the combined effect of waves and current[J]. Aquacult Engin, 2018, 83: 47-56. doi: 10.1016/j.aquaeng.2018.08.002
    [32] 薛守义. 弹塑性力学[M]. 北京: 中国建材工业出版社, 2005: 201-206.
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  97
  • HTML全文浏览量:  24
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-28
  • 修回日期:  2021-03-17
  • 录用日期:  2021-03-29
  • 网络出版日期:  2021-05-22

目录

    /

    返回文章
    返回