留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

相对弧宽比对双通道方形养殖池的流场优化研究

张倩 桂劲松 任效忠 薛博茹 毕春伟 刘鹰

张倩, 桂劲松, 任效忠, 薛博茹, 毕春伟, 刘鹰. 相对弧宽比对双通道方形养殖池的流场优化研究[J]. 南方水产科学. doi: 10.12131/20210044
引用本文: 张倩, 桂劲松, 任效忠, 薛博茹, 毕春伟, 刘鹰. 相对弧宽比对双通道方形养殖池的流场优化研究[J]. 南方水产科学. doi: 10.12131/20210044
ZHANG Qian, GUI Jinsong, REN Xiaozhong, XUE Boru, BI Chunwei, LIU Ying. Optimization of flow field in dual-drain square aquaculture tank with relative arc to width ratio[J]. South China Fisheries Science. doi: 10.12131/20210044
Citation: ZHANG Qian, GUI Jinsong, REN Xiaozhong, XUE Boru, BI Chunwei, LIU Ying. Optimization of flow field in dual-drain square aquaculture tank with relative arc to width ratio[J]. South China Fisheries Science. doi: 10.12131/20210044

相对弧宽比对双通道方形养殖池的流场优化研究

doi: 10.12131/20210044
基金项目: 国家自然科学基金面上项目 (31872609);南方海洋科学与工程广东省实验室 (广州) 人才团队引进重大专项 (GML2019ZD0402);广东省重点领域研发计划项目 (2019B020215001)
详细信息
    作者简介:

    张倩:张 倩  (1996—),女,硕士研究生,研究方向为工程水动力学。E-mail: zhangqian4924@163.com

    通讯作者:

    任效忠 (1981—),男,副研究员,博士,从事工程水动力学研究及工程设计。E-mail: renxiaozhong@dlou.edu.cn

  • 中图分类号: S 955.1

Optimization of flow field in dual-drain square aquaculture tank with relative arc to width ratio

  • 摘要: 为改善双通道方形养殖池内流场特性,通过研究圆弧角和直边的池壁组合方式对其进行流场优化,从而为循环水养殖产业提供更好的养殖装备。利用计算流体力学技术对双通道养殖池内流场进行三维数值模拟,通过对修正速度v0和均匀系数UC50的分析,评估了相对弧宽比 (R/BR为圆弧角半径,B为池壁边长) 对池内流场特性的影响。结果表明,不同的底流分流比 (养殖池底部中心排水口的出流流量占总体出流流量的百分比) 工况均呈现相同的规律,即在相同的水体交换率下,0.2≤R/B<0.4的方形圆弧角养殖池的平均流速大约为方形养殖池的2倍,而与圆形养殖池相比无明显差异;且在流场均匀性分析中发现,0.2≤R/B<0.4的方形圆弧角养殖池均匀系数较高,甚至优于圆形养殖池的流态。研究表明,方形圆弧角养殖池的圆弧角能够有效缩小方形养殖池中直角所导致的低流速区域面积,且保留了较高的空间利用率。方形圆弧角养殖池结合了方形养殖池和圆形养殖池的优势,能够较好地解决双通道方形养殖池内流态不佳的问题,具有良好的产业推广及应用价值。
  • 图  1  Cornell式双通道圆形养殖池模型

    Figure  1.  Schematic diagram of 'Cornell -type' dual-drain circular tank model

    图  2  流速对比图

    Figure  2.  Comparison of velocity variation

    图  3  模型示意图

    Figure  3.  Schematic diagram of model

    图  4  网格划分示意图

    Figure  4.  Schematic diagram of meshing

    图  5  两种不同数量的网格计算结果对比

    Figure  5.  Comparison of two meshes with different quantity

    图  6  修正速度随相对弧宽比的变化趋势

    Figure  6.  Variation of v0 with R/B

    图  7  测点分布示意图

    Figure  7.  Schematic diagram of measurement point distribution

    图  8  UC50 R/B的变化趋势

    Figure  8.  Variation of UC50 with R/B

    图  9  速度分布云图

    Figure  9.  Contour maps of velocity magnitudes

  • [1] ALMANSA C, REIG L, OCA J. Use of laser scanning to evaluate turbot (Scophthalmus maximus) distribution in raceways with different water velocities[J]. Aquac Eng, 2012, 51: 7-14. doi: 10.1016/j.aquaeng.2012.04.002
    [2] ROSS R M, WATTEN B J, KRISE W F, et al. Influence of tank design and hydraulic loading on the behavior, growth and metabolism of rainbow trout (Oncorhynchus mykiss)[J]. Aquac Eng, 1995, 14: 29-47. doi: 10.1016/0144-8609(94)P4425-B
    [3] 王江竹, 宛立, 任效忠, 等. 循环水养殖中水动力特性对鱼类影响的研究进展[J]. 水产科学, 2020, 39(3): 458-464.
    [4] DUARTE S, REIG L, MASALÓ I, et al. Influence of tank geometry and flow pattern in fish distribution[J]. Aquac Eng, 2011, 44: 48-54. doi: 10.1016/j.aquaeng.2010.12.002
    [5] 秦抱元, 刘鹰. 澳大利亚海洋渔业工程发展概况与中澳海洋渔业合作前景分析[J]. 农业工程学报, 2020, 36(11): 318-326. doi: 10.11975/j.issn.1002-6819.2020.11.038
    [6] OCA J, MASALÓ I. Design criteria for rotating flow cells in rectangular aquaculture tanks[J]. Aquac Eng, 2007, 36: 36-44. doi: 10.1016/j.aquaeng.2006.06.001
    [7] ELALOUF H, KASPI M, ELALOUF A, et al. Optimal operation policy for a sustainable recirculation aquaculture system for ornamental fish: simulation and response surface methodology[J]. Comput Oper Res, 2018, 89: 230-240. doi: 10.1016/j.cor.2017.05.002
    [8] FARGHALLY H M, ATIA D M, EL-MADANY H T, et al. Control methodologies based on geothermal recirculating aquaculture system[J]. Energy, 2014, 78: 826-833. doi: 10.1016/j.energy.2014.10.077
    [9] LABATUT R A, EBELING J M, BHASKARAN R, et al. Hydrodynamics of a Large-scale Mixed-Cell Raceway (MCR): experimental studies[J]. Aquac Eng, 2007, 37: 132-143. doi: 10.1016/j.aquaeng.2007.04.001
    [10] LABATUT R A, EBELING J M, BHASKARAN R, et al. Effects of inlet and outlet flow characteristics on mixed-cell raceway (MCR) hydrodynamics[J]. Aquac Eng, 2007, 37: 158-170. doi: 10.1016/j.aquaeng.2007.04.002
    [11] 于林平, 薛博茹, 任效忠, 等. 单进水管结构对单通道方形圆弧角养殖池水动力特性的影响研究[J]. 大连海洋大学学报, 2020, 35(1): 134-140.
    [12] 任效忠, 薛博茹, 姜恒志, 等. 双进水管系统对单通道矩形圆弧角养殖池水动力特性影响的数值研究[J]. 海洋环境科学, 2021, 40(1): 50-56. doi: 10.12111/j.mes.20190234
    [13] 任效忠, 王江竹, 张倩, 等. 方形圆弧角养殖池进水结构对流场影响的试验研究[J]. 大连海洋大学学报, 2020, 35(5): 726-732.
    [14] GORLE J M R, TERJESEN B F, SUMMERFELT S T. Hydrodynamics of octagonal culture tanks with Cornell-type dual-drain system[J]. Comput Electron Agric, 2018, 151: 354-364. doi: 10.1016/j.compag.2018.06.012
    [15] PFEIFFER T J, RICHE M A. Evaluation of a low-head Recirculating Aquaculture System used for rearing Florida pompano to market size[J]. J World Aquac Soc, 2011, 42(2): 198-208. doi: 10.1111/j.1749-7345.2011.00456.x
    [16] TERJESEN B F, SUMMERFELT S T, NERLAND S, et al. Design, dimensioning, and performance of a research facility for studies on the requirements of fish in RAS environments[J]. Aquac Eng, 2013, 54: 49-63. doi: 10.1016/j.aquaeng.2012.11.002
    [17] CARVALHO R A P L F, LEMOS D E L, TACONB A G J. Performance of single-drain and dual-drain tanks in terms of water velocity profile and solids flushing for in vivo digestibility studies in juvenile shrimp[J]. Aquac Eng, 2013, 57: 9-17. doi: 10.1016/j.aquaeng.2013.05.004
    [18] SUMMERFELT S T, MATHISEN F, HOLAN A B, et al. Survey of large circular and octagonal tanks operated at Norwegian commercial smolt and post-smolt sites[J]. Aquac Eng, 2016, 74: 105-110. doi: 10.1016/j.aquaeng.2016.07.004
    [19] 史明明, 阮贇杰, 刘晃, 等. 基于CFD的循环生物絮团系统养殖池固相分布均匀性评价[J]. 农业工程学报, 2017, 33(2): 252-258. doi: 10.11975/j.issn.1002-6819.2017.02.035
    [20] GORLE J M R, TERJESEN B F, MOTA V C, et al. Water velocity in commercial RAS culture tanks for Atlantic salmon smolt production[J]. Aquac Eng, 2018, 81: 89-100. doi: 10.1016/j.aquaeng.2018.03.001
    [21] KLEBERT P, VOLENT Z, ROSTEN T. Measurement and simulation of the three-dimensional flow pattern and particle removal efficiencies in a large floating closed sea cage with multiple inlets and drains[J]. Aquac Eng, 2018, 80: 11-21. doi: 10.1016/j.aquaeng.2017.11.001
    [22] 刘志强, 许柳雄, 唐浩, 等. 不同工作姿态下立式双曲面网板水动力及周围流场特性研究[J]. 南方水产科学, 2020, 16(2): 87-98.
    [23] 薛博茹, 姜恒志, 任效忠, 等. 进径比对方形圆弧角养殖池内流场特性的影响研究[J]. 渔业现代化, 2020, 47(4): 20-27. doi: 10.3969/j.issn.1007-9580.2020.04.004
    [24] LABATUT R A, EBELING J M, BHASKARAN R, et al. Exploring flow discharge strategies of a mixed-cell raceway (MCR) using 2-D computational fluid dynamics (CFD)[J]. Aquac Eng, 2015, 66: 68-77. doi: 10.1016/j.aquaeng.2015.01.001
    [25] LABATUT R A, EBELING J M, BHASKARAN R, et al. Modeling hydrodynamics and path/residence time of aquaculture-like particles in a mixed-cell raceway (MCR) using 3D computational fluid dynamics (CFD)[J]. Aquac Eng, 2015, 67: 39-52. doi: 10.1016/j.aquaeng.2015.05.006
    [26] BEHROOZI L, COUTURIER M F. Prediction of water velocities in circular aquaculture tanks using an axisymmetric CFD model[J]. Aquac Eng, 2019, 85: 114-128. doi: 10.1016/j.aquaeng.2019.03.005
    [27] LIU Y, LIU B, LEI J, et al. Numerical simulation of the hydrodynamics within octagonal tanks in recirculating aquaculture systems[J]. Chin J Oceanol Limnol, 2017, 35(4): 912-920. doi: 10.1007/s00343-017-6051-3
    [28] 桂劲松, 张倩, 任效忠, 等. 圆弧角优化对单通道方形养殖池流场特性的影响研究[J]. 大连海洋大学学报, 2020, 35(2): 308-316.
    [29] 俞国燕, 魏武, 王筱珍, 等. 双通道养殖池流态模拟及验证[J]. 渔业现代化, 2012, 39(6): 10-14. doi: 10.3969/j.issn.1007-9580.2012.06.003
    [30] DAVIDSON J, SUMMERFELT S. Solids flushing, mixing, and water velocity profiles within large (10 and 150 m3) circular 'Cornell-type' dual-drain tanks[J]. Aquac Eng, 2004, 32: 245-271. doi: 10.1016/j.aquaeng.2004.03.009
    [31] 魏武. 循环水圆形养殖池数值模拟及结构优化[D]. 湛江: 广东海洋大学, 2013: 28-31.
    [32] 张倩, 桂劲松, 薛博茹, 等. 双通道排水系统对矩形圆弧角养殖池流场特性的影响研究[J]. 渔业现代化, 2020, 47(6): 19-25. doi: 10.3969/j.issn.1007-9580.2020.06.004
    [33] WATTEN B J, HONEYFIELD D C, SCHWARTZ M F. Hydraulic characteristics of a rectangular mixed-cell rearing unit[J]. Aquac Eng, 2000, 24: 59-73. doi: 10.1016/S0144-8609(00)00064-9
    [34] OCA J, MASALÓ I, REIG L. Comparative analysis of flow patterns in aquaculture rectangular tanks with different water inlet characteristics[J]. Aquac Eng, 2004, 31: 221-236. doi: 10.1016/j.aquaeng.2004.04.002
    [35] MASALÓ I, OCA J. Hydrodynamics in a multivortex aquaculture tank: effect of baffles and water inlet characteristics[J]. Aquac Eng, 2014, 58: 69-76. doi: 10.1016/j.aquaeng.2013.11.001
    [36] LUNGER A, RASMUSSEN M R, LAURSEN J, et al. Fish stocking density impacts tank hydrodynamics[J]. Aquaculture, 2006, 254: 370-375. doi: 10.1016/j.aquaculture.2005.10.023
    [37] RASMUSSEN M R, LAURSEN J, CRAIG, S R, et al. Do fish enhance tank mixing?[J]. Aquaculture, 2005, 250: 162-174. doi: 10.1016/j.aquaculture.2005.02.041
    [38] MASALÓ I, OCA J. Influence of fish swimming on the flow pattern of circular tanks[J]. Aquac Eng, 2016, 74: 84-95. doi: 10.1016/j.aquaeng.2016.07.001
  • 加载中
图(9)
计量
  • 文章访问数:  136
  • HTML全文浏览量:  27
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-22
  • 修回日期:  2021-11-22
  • 录用日期:  2021-11-29
  • 网络出版日期:  2021-12-16

目录

    /

    返回文章
    返回