Study on carbonate alkalinity tolerance of Nile tilapia (Oreochromis niloticus)
-
摘要: 该研究以2种规格 [ 大:(21.56±0.27) g,小:(5.92±0.03) g] 的尼罗罗非鱼 (Oreochromis niloticus) 幼鱼为研究对象,采用碳酸氢钠 (NaHCO3) 分别配制不同浓度的碳酸盐碱水体进行3种胁迫实验:1) 将鱼由淡水直接移入碳酸盐碱度为30或22 g·L−1的水体中进行高浓度碱胁迫致死;2) 将鱼由淡水直接移入碳酸盐碱度为6~10 g·L−1的不同碱度组水体中进行96 h急性碱胁迫;3) 分别以+2、+4和+6 g·(L·d)−1的每日碱度增加进行慢性碱驯化,探索其对碳酸盐碱度的耐受能力。结果表明,尼罗罗非鱼急性胁迫96 h的半致死碱度为6.25~9.01 g·L−1,其耐碱能力虽弱于青海湖裸鲤 (Gymnocypris przewalskii) 等耐高碱鱼类,但仍强于大多淡水养殖鱼类;在幼鱼阶段,体质量增加3倍以上的尼罗罗非鱼对碳酸盐碱胁迫的耐受性显著增强;养殖中可通过2 g·(L·d)−1的每日碱增加对罗非鱼进行碱驯化;互补重对数模型较好地拟合急性碱胁迫下“时间-碱度-死亡率”间关系。Abstract: In this study, we examined the tolerance to carbonate alkalinity of two sizes of Nile tilapia (Oreochromis niloticus) [Large: (21.56±0.27) g, Small: (5.92±0.03) g]. Different carbonate-alkalinity solutions were prepared with NaHCO3 to carry out the experiment: 1) The fish were directly transferred from fresh water to 30 or 22 g·L−1 carbonate alkalinity solutions to determine the mortality. 2) The fish were acutely exposed to different carbonate alkalinity solutions ranging from 6 to 10 g·L−1 for 96 h. 3) For chronic alkaline acclimation experiments, the carbonate concentrations increased gradually at three levels of +2, +4 and +6 g·(L·d)−1. The results show that the half lethal alkalinities of Nile tilapia under acute stress for 96 h ranged from 6.25 to 9.01 g·L−1. The alkaline tolerance of Nile tilapia was weaker than that of fish which adapt to extreme alkaline environment (e.g. Gymnocyprinus przewalskii), but it was still stronger than that of most freshwater cultured fish. At juvenile stage, the tolerance of Nile tilapia to carbonate stress was significantly enhanced when its body mass increased more than three times. Nile tilapia can be acclimated by daily alkaline increment of 2 g·L−1. The relationship of "time-alkalinity-mortality" under acute alkaline stress can be well fitted by complementary log-log model.
-
Key words:
- Oreochromis niloticus /
- Alkaline stress /
- Tolerance /
- Complementary log-log model
-
表 1 基于线性回归模型尼罗罗非鱼累计死亡率的相关性分析
Table 1. Correlation analysis of cumulative mortality of Nile tilapia by linear regression model
组别
Group胁迫时间
Stress time/h回归方程
Regression equation相关系数
Correlation coefficientP 半致死浓度
LC50/(g·L−1)大规格鱼 Large size fish 96 y=0.329x−2.445 0.999 0.016 8.95 小规格鱼 Small size fish 96 y=0.200x−0.750 0.998 0.028 6.25 表 2 尼罗罗非鱼互补重对数模型的参数估计及其显著性检验
Table 2. Estimated and tested parameters of complementary log-log model of Nile tilapia
组别
Group半致死浓度
LC50/(g·L−1)条件死亡率模型
Conditional mortality model累计死亡率模型
Cumulative mortality model参数
Parameter系数
Coefficient标准误
Standard errort 检验
t testP 参数
Parameter系数
Coefficient大规格鱼 Large size fish 9.01 β 21.401 1 0.150 7 142.015 9 0.000 1 β 21.401 1 γ48 −23.677 6 1.892 5 12.511 3 0.000 1 τ48 −22.710 7 γ96 −21.714 4 3.050 7 7.117 8 0.000 1 τ96 −20.800 2 Pearson卡方检验值 Pearson's chi square test 11.529 08<χ2 0.05=25.00,df=15,P=0.775 71>0.05
Hosmer & Lemeshow 拟合度卡方统计量 Hosmer & Lemeshow statistic value 4.900 0<χ2 0.05=15.51,df=8,P=0.768 21>0.05小规格鱼 Small size fish 6.35 β 11.405 9 2.138 8 5.332 8 0.000 1 β 11.405 9 γ48 −12.630 2 1.894 3 6.667 5 0.000 1 τ48 −11.353 7 γ96 −10.923 7 1.814 3 6.021 0 0.000 1 τ96 −9.524 9 Pearson卡方检验值 Pearson's chi square test 23.255 01<χ2 0.05= 25.00,df=15,P=0.107 09>0.05
Hosmer & Lemeshow 拟合度卡方统计量 Statistic value 13.002 9<χ2 0.05= 15.51,df=8,P=0.111 75>0.05注:P>0.05表示模型拟合效果好。 Note: P>0.05 indicates that the model shows the best performance. 表 3 慢性碱驯化下尼罗罗非鱼累计死亡率相关分析
Table 3. Correlation Analysis of cumulative mortality of Nile tilapia with gradual alkalinity
组别
Group碱度变化速度
Rate of alkaline
change/[g·(L·d)−1]成活时间
Survival time/h死亡碱度下限
Lower limit of
dead alkalinity/(g·L−1)生存碱度上限
Upper limit of
survival alkalinity/(g·L−1)半致死浓度
LC50/(g·L−1)相关系数
Correlation
coefficient大规格鱼 Large size fish +2 144 8.20 12.00 10.55 0.999 +4 92 7.21 15.92 11.59 0.997 +6 68 6.64 17.07 13.03 0.997 小规格鱼 Small size fish +2 140 8.01 11.50 9.91 0.999 +4 68 6.91 11.98 8.87 0.997 +6 52 5.90 15.23 8.54 0.999 表 4 常见鱼类急性胁迫96 h的半致死浓度
Table 4. 96 h LC50 values of alkalinity of common fish species
种类
Species规格
Size半致死浓度
LC50/(mol·L−1)文献
Reference青海湖裸鲤 Gymnocypris przewalskii (12.52±0.32) g 150.18×10−3 [13] 达里湖高原鳅 Triplophysa dalaica (8.72±1.20) g 120.0×10−3 [13] 威海卡拉白鱼 Chalcalburnus chalcoides aralensis 2.60~4.62 g 112.23×10−3 [14] 大鳞副泥鳅 Paramisgurnus dabryanus (47.32±0.88) g 88.83×10−3 [13] 黄鳝 Monopterus albus (11.82±1.51) g 75.94×10−3 [15] 黑龙江泥鳅 Misgurnus mohoity (Dybowski) (16.3±0.53) g 72.62×10−3 [13] 异育银鲫 Carassiusauratus gibelio (28.20±3.91) g 70.368×10−3 [16] 达里湖鲫 Carassius auratus Linnacus (4.16±0.47) cm 63.42×10−3 [17] 彭泽鲫 Carassius auratus var. pengzesis 3.26~3.68 g 59.87×10−3 [18] 花鲈 Lateolabrax maculatus (3.19±0.21) cm 46.18×10−3 [19] 叶尔羌高原鳅 Triplophysa yarkandensis 4.64~11.39 g 35.143×10−3 [20] 欧鲇 Silurus glurnis Linnaeus (0.32±0.11)~(0.73±0.12) g 5.099×10−3 [21] -
[1] 刘永新, 方辉, 来琦芳, 等. 我国盐碱水渔业现状与发展对策[J]. 中国工程科学, 2016, 18(3): 74-78. doi: 10.3969/j.issn.1009-1742.2016.03.013 [2] 高珊, 常玉梅, 赵雪飞, 等. 不同NaHCO3碱度对瓦氏雅罗鱼鳃组织结构的影响[J]. 水生生物学报, 2020, 44(4): 736-743. doi: 10.7541/2020.088 [3] TRUCHOT J P, FORGUE J. Effect of water alkalinity on gill CO2 exchange and internal pCO2 in aquatic animals: effects of environmental pH change and sodium uptake blockade[J]. Comp Biochem Physiol A, 1998, 119(1): 131-136. doi: 10.1016/S1095-6433(97)00398-X [4] 王燕. 碳酸盐碱度胁迫下尼罗罗非鱼HCO3 −离子代谢和转运的途径[D]. 上海: 上海海洋大学, 2017: 13-14. [5] 吴俊伟, 赵金良, 赵岩, 等. 高碳酸盐碱胁迫对尼罗罗非鱼氨代谢基因表达变化的影响[J]. 中国水产科学, 2016, 23(6): 1290-1299. [6] EVANS D H, PIERMARINI P M, CHOE K P. The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste[J]. Physiol Rev, 2005, 85(1): 97-177. [7] BERGMAN A N, LAURENT P, OTIANG'A-OWITI G, et al. Physiological adaptations of the gut in the Lake Magadi tilapia, Alcolapia grahami, an alkaline- and saline-adapted teleost fish[J]. Comp Biochem Physiol A, 2003, 136(3): 701-715. doi: 10.1016/S1095-6433(03)00223-X [8] WILKIE M P, WOOD C M. The adaptations of fish to extremely alkaline environments[J]. Comp Biochem Physiol A, 1996, 113(4): 665-673. doi: 10.1016/0305-0491(95)02092-6 [9] ROMERO M F, FULTON C M, BORON W F. The SLC4 family of HCO3 − transporters[J]. Pflugers Arch, 2004, 447(5): 495-509. doi: 10.1007/s00424-003-1180-2 [10] ZHAO Y, ZHANG C S, ZHOU H T, et al. Transcriptome changes for Nile tilapia (Oreochromis niloticus) in response to alkalinity stress[J]. Comp Biochem Physiol D, 2020, 33: 100651. doi: 10.1016/j.cbd.2019.100651 [11] TONG C, LI M. Genomic signature of accelerated evolution in a saline-alkaline lake-dwelling Schizothoracine fish[J]. Int J Biol Macromol, 2020, 149: 341-347. doi: 10.1016/j.ijbiomac.2020.01.207 [12] DANULAT E, KEMPE S. Nitrogenous waste excretion and accumulation of urea and ammonia in Chalcalburnus tarichi (Cyprinidae), endemic to the extremely alkaline Lake Van (Eastern Turkey)[J]. Fish Physiol Biochem, 1992, 9(5/6): 377-386. [13] 武鹏飞, 耿龙武, 姜海峰, 等. 三种鳅科鱼对NaCl盐度和NaHCO3碱度的耐受能力[J]. 中国水产科学, 2017, 24(2): 248-257. [14] 蔺玉华, 王信海, 丁辰龙. 卡拉白鱼的研究进展[J]. 吉林农业大学学报, 2015, 37(5): 512-519. [15] 周文宗, 宋祥甫, 陈桂发. 黄鳝对盐碱耐受性的研究[J]. 淡水渔业, 2014, 44(3): 95-99. doi: 10.3969/j.issn.1000-6907.2014.03.017 [16] 沈立, 郝卓然, 周凯, 等. 异育银鲫“中科三号”对盐度和碳酸盐碱度的耐受性[J]. 海洋渔业, 2014, 36(5): 445-452. doi: 10.3969/j.issn.1004-2490.2014.05.009 [17] 周伟江, 梁利群, 常玉梅, 等. 达里湖鲫对盐度和碱度突变和渐变的耐受性[J]. 淡水渔业, 2013, 43(5): 14-20. doi: 10.3969/j.issn.1000-6907.2013.05.003 [18] 郑伟刚, 张兆琪, 张美昭. 澎泽鲫幼鱼对盐度和碱度耐受性的研究[J]. 集美大学学报 (自然科学版), 2004, 9(2): 127-130. [19] 郑伟刚, 张兆琪, 张美昭, 等. 盐度与碱度对花鲈幼鱼的毒性研究[J]. 中国生态农业学报, 2005, 13(3): 116-118. [20] 陈生熬. 叶尔羌高原鳅早期发育及盐碱适应生理机制[D]. 武汉: 华中农业大学, 2019: 92-94. [21] 魏玉众, 张人铭, 宋明波, 等. 欧鲇幼鱼对盐碱的耐受性[J]. 新疆农业科学, 2019, 56(7): 1335-1343. [22] YAO Z L, WANG H, CHEN L, et al. Transcriptomic profiles of Japanese medaka (Oryzias latipes) in response to alkalinity stress[J]. Genet Mol Res, 2012, 11(3): 2200-2246. [23] WILKIE M P, WRIGHT P A, IWAMA G K, et al. The physiological adaptations of the Lahontan cutthroat trout (Oncorhynchus clarki henshawi) following transfer from well water to the highly alkaline waters of Pyramid Lake, Nevada (pH 9.4)[J]. Physiol Biochem Zool, 1994, 67(2): 355-380. [24] 张震, 郝强, 周小秋, 等. 近年我国淡水鱼营养与饲料科学研究进展[J]. 动物营养学报, 2020, 32(10): 4743-4764. doi: 10.3969/j.issn.1006-267x.2020.10.026 [25] 庄青青, 赵金良, 赵丽慧, 等. 盐度胁迫对尼罗罗非鱼鳃氯细胞调节变化的影响[J]. 生态学杂志, 2012, 31(10): 2619-2624. [26] VILLEGAS C T. Evaluation of the salinity tolerance of Oreochromis mossambicus, O. niloticus and their F1 hybrids[J]. Aquaculture, 1990, 85(1/2/3/4): 281-292. [27] 宋凌元, 赵亮亮, 张成硕, 等. 尼罗罗非鱼盐碱选育4代耐受性和生长性能评估[J]. 江苏农业科学, 2020, 48(5): 171-174. [28] WATANABE W O, KUO C M, HUANG M C. The ontogeny of salinity tolerance in the tilapias Oreochromis, O. aureus, and O. mossambicus×O. niloticus hybrid, spawned and hatched in freshwater[J]. Aquaculture, 1985, 47(4): 353-367. doi: 10.1016/0044-8486(85)90220-0 [29] 雷衍之, 董双林, 沈成钢. 碳酸盐碱度对鱼类毒性作用的研究[J]. 水产学报, 1985, 9(2): 171-183. [30] 赵岩, 吴俊伟, 孟森, 等. 碳酸盐碱度胁迫对尼罗罗非鱼血清pH、游离氨浓度及相关基因表达的影响[J]. 南方农业学报, 2016, 47(6): 1032-1038. doi: 10.3969/j:issn.2095-1191.2016.06.1032 [31] 蔡守平. 绿僵菌MaFZ-13对油桐鹰尺蠖致病力的时间-剂量-死亡率模型分析[J]. 中国森林病虫, 2020, 39(3): 1-4. [32] 杜雪松, 宾石玉, 林勇, 等. 基于ULCIZ和SIT的罗非鱼耐寒性能测定模型[J]. 广西师范大学学报 (自然科学版), 2013, 31(4): 134-139. -