留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

牡蛎中诺如病毒的感染及其防控研究进展

赵峰 佟利惠 杨敏 王珊珊 刘楠 孙永 周德庆

赵峰, 佟利惠, 杨敏, 王珊珊, 刘楠, 孙永, 周德庆. 牡蛎中诺如病毒的感染及其防控研究进展[J]. 南方水产科学. doi: 10.12131/20210042
引用本文: 赵峰, 佟利惠, 杨敏, 王珊珊, 刘楠, 孙永, 周德庆. 牡蛎中诺如病毒的感染及其防控研究进展[J]. 南方水产科学. doi: 10.12131/20210042
Feng ZHAO, Lihui TONG, Min YANG, Shanshan WANG, Nan LIU, Yong SUN, Deqing ZHOU. Progress and prospects of infection, prevention and control of norovirus in oyster[J]. South China Fisheries Science. doi: 10.12131/20210042
Citation: Feng ZHAO, Lihui TONG, Min YANG, Shanshan WANG, Nan LIU, Yong SUN, Deqing ZHOU. Progress and prospects of infection, prevention and control of norovirus in oyster[J]. South China Fisheries Science. doi: 10.12131/20210042

牡蛎中诺如病毒的感染及其防控研究进展

doi: 10.12131/20210042
基金项目: 国家重点研发计划“蓝色粮仓科技创新”专项 (2019YFD0901702)
详细信息
    作者简介:

    赵峰:赵 峰 (1982—),男,博士,副研究员,从事水产品加工与质量安全控制研究。E-mail: zhaof_cn@163.com

    通讯作者:

    周德庆 (1962—),男,博士,研究员,从事水产品加工与质量安全控制研究。E-mail: zhoudq@ysfri.ac.cn

  • 中图分类号: TS 254.7

Progress and prospects of infection, prevention and control of norovirus in oyster

  • 摘要: 诺如病毒 (Norovirus, NoV) 是非细菌性急性胃肠炎的主要病原体。牡蛎可通过滤食作用富集海水和环境中污染的NoV,是NoV传播的重要载体。人们倾向于食用生的或轻微烹煮的牡蛎,导致NoV感染事件时有发生。与牡蛎相关的食源性疾病中,约50%由NoV引起。荧光定量PCR是检测NoV的主要方法,但其不能有效区分感染性与非感染性NoV。由于NoV难以在体外培养,致使评估NoV灭活方法的有效性存在困难。猪胃黏蛋白 (Porcine gastric mucin, PGM) 及叠氮溴化丙锭 (Propidium monoazide, PMA) 等核酸嵌入剂与qPCR结合的方法在检测感染性NoV中显现出应用潜力。牡蛎中NoV的消减方式多为超高压处理,400 MPa及以上的压力可使NoV大量灭活。文章综述了近年来牡蛎 [ 主要是太平洋牡蛎 (Crassostrea gigas)、褶牡蛎 (Alectryonella plicatula) 和熊本牡蛎 (C. sikamea)] 中NoV的污染状况、富集机制、检测方法以及超高压处理消减NoV等方面的研究成果,为建立牡蛎中NoV有效的风险预警和控制技术提供参考。
  • 表  1  净化对牡蛎中诺如病毒消除效果的影响

    Table  1.   Effect of purification on elimination of NoV in oysters

    诺如病毒类型
    Genotype
    净化时间
    Clarification time
    诺如病毒初始拷贝数
    Initial copies
    净化后诺如病毒拷贝数
    Copies after depuration
    参考文献
    Reference
    GII23 h2.7×104 拷贝·g−13.9×104 拷贝·g−1[43]
    GI8 d1.4×104 拷贝·g−14.6×103 拷贝·g−1[44]
    8 d5.9×104 拷贝·g−17.6×103 拷贝·g−1
    GII10 d1.7×103 拷贝·g−11.8×103 拷贝·g−1[45]
    GI8 周3.8×104 拷贝·g−1<100 拷贝·g−1[44]
    GI6 周(1~2)×106 拷贝·个−11×104 拷贝·个−1[46]
    6 周(1~2)×106 拷贝·个−13.8×104 拷贝·个−1
    下载: 导出CSV

    表  2  超高压对牡蛎中诺如病毒消减效果的影响

    Table  2.   Effects of high hydrostatic pressure on inactivation effect of NoV in oysters

    型别
    Genotype
    加压基质
    Matrix
    压力
    Pressure/MPa
    温度
    Temperature/℃
    时间
    t/min
    初始拷贝数
    Initial copies/lg
    诺如病毒减少量
    Reduction/lg
    参考文献
    Reference
    GII.4 牡蛎上清液 300 25 5 4 1.0 [41]
    6 3.5
    400 25 1.4
    6 3.9
    500 25 1.7
    6 >4.0
    600 25 1.7
    6 >4.0
    GII.4 牡蛎匀浆 300 25 5 4 1.7
    6 2.9
    400 25 3.6
    6 3.6
    600 25
    6 >4.0
    GI.1 牡蛎 600 6 5 4 >4.0 [38]
    GII.4 牡蛎匀浆 300 25 2 4~5 0.7 [39]
    0 3.2
    350 25 3.6
    0 >4.2
    GI.1 牡蛎匀浆 450 25 0.7
    0 3.2
    500 25 0.8
    0 >4.3
    600 6 5 >4
    下载: 导出CSV
  • [1] 苏来金. 诺如病毒在贝类中的分布及与牡蛎类组织血型抗原结合机制研究[D]. 上海: 上海海洋大学, 2019: 3-4.
    [2] WANG J, DENG Z J. Modeling and prediction of oyster norovirus outbreaks along Gulf of Mexico coast[J]. Environ Health Persp, 2016, 124(5): 627-633. doi: 10.1289/ehp.1509764
    [3] 周德庆, 苏来金, 赵峰, 等. 诺如病毒在贝类中的富集特性与机制研究进展[J]. 病毒学报, 2015, 31(3): 313-317.
    [4] HASSAN E, BALDRIDGE M T. Norovirus encounters in the gut: multifaceted interactions and disease outcomes[J]. Mucosal Immunol, 2019, 12: 1259-1267. doi: 10.1038/s41385-019-0199-4
    [5] 俞进存, 向以斌, 靳淼, 等. 2015~2018年玉溪市5岁以下儿童诺如病毒分子流行病学分析[J]. 病毒学报, 2020, 36(3): 110-118.
    [6] 王美欢, 郭莉敏, 凌水权. 一起幼儿园诺如病毒感染性腹泻暴发调查[J]. 寄生虫病与感染性疾病, 2020(1): 41-44.
    [7] WESTRELL T, DUSCH V, ETHELBERG S, et al. Norovirus outbreaks linked to oyster consumption in the United Kingdom, Norway, France, Sweden and Denmark, 2010[J]. Eurosurveillance, 2010, 15(12): 19524.
    [8] BAKER K, MORRIS J, MCCARTHY N, et al. An outbreak of norovirus infection linked to oyster consumption at a UK restaurant, February 2010[J]. Public Health, 2011, 33(2): 205-211. doi: 10.1093/pubmed/fdq089
    [9] KRONEMAN A, VENNEMA H, HARRIS J, et al. Increase in norovirus activity reported in Europe[J]. Weekly Releases, 2006, 11(50): 3093.
    [10] WANG X, WEI Z, GUO J, et al. Norovirus activity and genotypes in sporadic acute diarrhea in children in Shanghai during 2014–2018[J]. J Pediat Inf Dis Soc, 2019, 38(11): 1085. doi: 10.1097/INF.0000000000002456
    [11] DICAPRIO E, YE M, CHEN H, et al. Inactivation of human norovirus and Tulane virus by high pressure processing in simple mediums and strawberry puree[J]. Agroecol Sust Food, 2019, 3: 26.
    [12] KIM S Y, KO G. Using propidium monoazide to distinguish between viable and nonviable bacteria, MS2 and murine norovirus[J]. Lett Appl Microbiol, 2012, 55(3): 182-188. doi: 10.1111/j.1472-765X.2012.03276.x
    [13] SARMENTO S K, GUERRA C R, MALTA F C, et al. Human norovirus detection in bivalve shellfish in Brazil and evaluation of viral infectivity using PMA treatment[J]. Mar Poll Bull, 2020, 157: 111315. doi: 10.1016/j.marpolbul.2020.111315
    [14] RANDAZZO W, LÓPEZ-GÁLVEZ F, ALLENDE A, et al. Evaluation of viability PCR performance for assessing norovirus infectivity in fresh-cut vegetables and irrigation water[J]. Int J Food Microbiol, 2016, 229: 1-6. doi: 10.1016/j.ijfoodmicro.2016.04.010
    [15] AHMED H, MAUNULA L, KORHONEN J. Reduction of norovirus in foods by nonthermal treatments: a review[J]. J Food Protect, 2020, 83(12): 2053-2073. doi: 10.4315/JFP-20-177
    [16] LIU D, ZHANG Z, HEWITT J, et al. Surveillance of human norovirus in oysters collected from production area in Shandong Province, China during 2017–2018[J]. Food Control, 2020, 121(10): 7649.
    [17] MEGHNATH K, HASSELBACK P, MCCORMICK R, et al. Outbreaks of norovirus and acute gastroenteritis associated with British Columbia oysters, 2016 –2017[J]. Food Environ Virol, 2019, 11(2): 138-148. doi: 10.1007/s12560-019-09374-4
    [18] UEKI Y, AMARASIRI M, KAMIO S, et al. Human norovirus disease burden of consuming Crassostrea gigas oysters: a case-study from Japan[J]. Food Control, 2021, 121: 107556. doi: 10.1016/j.foodcont.2020.107556
    [19] GUIX S, FUENTES C, PINTO R M, et al. Infectivity of norovirus GI and GII from bottled mineral water during a waterborne outbreak, Spain[J]. Emerg Infect Dis, 2020, 26(1): 134.
    [20] MCINTYRE L, GALANIS E, MATTISON K, et al. Multiple clusters of norovirus among shellfish consumers linked to symptomatic oyster harvesters[J]. J Food Protect, 2012, 75(9): 1715-1720. doi: 10.4315/0362-028X.JFP-12-113
    [21] GYAWALI P, FLETCHER G C, MCCOUBREY D J, et al. Norovirus in shellfish: an overview of post-harvest treatments and their challenges[J]. Food Control, 2019, 99: 171-179. doi: 10.1016/j.foodcont.2018.12.049
    [22] 寇晓霞, 吴爱武, 范宏英. 广东省市售牡蛎中诺如病毒污染调查[J]. 现代预防医学, 2018, 45(24): 29-32.
    [23] 吕素玲, 谭冬梅, 姚雪婷, 等. 广西养殖牡蛎中诺如病毒的污染状况及风险评估[J]. 中国食品卫生杂志, 2018, 30(5): 509-513.
    [24] 马丽萍. 贝类中诺如病毒的风险评估及与组织血型抗原相关性[D]. 上海: 上海海洋大学, 2013: 38.
    [25] MA L, SU L, LIU H, et al. Norovirus contamination and the glycosphingolipid biosynthesis pathway in Pacific oyster: a transcriptomics study[J]. Fish Shellfish Immunol, 2017, 66: 26-34. doi: 10.1016/j.fsi.2017.04.023
    [26] Le GUYADER F S, KROL J, AMBERT-BALAY K, et al. Comprehensive analysis of a norovirus-associated gastroenteritis outbreak, from the environment to the consumer[J]. J Clin Microbiol, 2010, 48(3): 915-920. doi: 10.1128/JCM.01664-09
    [27] Le GUYADER F S, PARNAUDEAU S, SCHAEFFER J, et al. Detection and quantification of noroviruses in shellfish[J]. Appl Environ Microb, 2009, 75(3): 618-624. doi: 10.1128/AEM.01507-08
    [28] 刘慧, 马丽萍, 赵峰, 等. 长牡蛎类 HBGAs 的提取与组织分布以及温度和盐度对其表达的影响[J]. 中国食品学报, 2019, 19(2): 236-243.
    [29] 刘萌, 刘慧, 赵峰, 等. 溶氧量及 pH对太平洋牡蛎类 A 型组织血型抗原表达的影响研究[J]. 食品安全质量检测学报, 2019(8): 7.
    [30] MA L, LIU H, SU L, et al. Histo-blood group antigens in Crassostrea gigas and binding profiles with GII.4 Norovirus[J]. J Oceanol Limnol, 2018, 36(4): 1383-1391. doi: 10.1007/s00343-018-7024-x
    [31] QUANG LE H, SUFFREDINI E, TIEN PHAM D, et al. Development of a method for direct extraction of viral RNA from bivalve molluscs[J]. Lett Appl Microbiol, 2018, 67(5): 426-434. doi: 10.1111/lam.13065
    [32] ZHANG L, XUE L, GAO J, et al. Development of a high-efficient concentrated pretreatment method for noroviruses detection in independent oysters: an extension of the ISO/TS 15216-2: 2013 standard method[J]. Food Control, 2019, 111: 107032.
    [33] IMAMURA S, KANEZASHI H, GOSHIMA T, et al. Next-generation sequencing analysis of the diversity of human noroviruses in Japanese oysters[J]. Foodborne Pathog Dis, 2017, 14(8): 465-471. doi: 10.1089/fpd.2017.2289
    [34] STRUBBIA S, SCHAEFFER J, BESNARD A, et al. Metagenomic to evaluate norovirus genomic diversity in oysters: impact on hexamer selection and targeted capture-based enrichment[J]. Int J Food Microbiol, 2020, 323: 108588. doi: 10.1016/j.ijfoodmicro.2020.108588
    [35] NASHERI N, PETRONELLA N, RONHOLM J, et al. Characterization of the genomic diversity of norovirus in linked patients using a metagenomic deep sequencing approach[J]. Front Microbiol, 2017, 8: 73.
    [36] SURESH M, HARLOW J, NASHERI N. Evaluation of porcine gastric mucin assay for detection and quantification of human norovirus in fresh herbs and leafy vegetables[J]. Food Microbiol, 2019, 84: 103254. doi: 10.1016/j.fm.2019.103254
    [37] KINGSLEY D H, VINCENT E M, MEADE G K, et al. Inactivation of human norovirus using chemical sanitizers[J]. Int J Food Microbiol, 2014, 171: 94-99. doi: 10.1016/j.ijfoodmicro.2013.11.018
    [38] LEON J S, KINGSLEY D H, MONTES J S, et al. Randomized, double-blinded clinical trial for human norovirus inactivation in oysters by high hydrostatic pressure processing[J]. Appl Environ Microb, 2011, 77(15): 5476-5482. doi: 10.1128/AEM.02801-10
    [39] YE M, LINGHAM T, HUANG Y, et al. Effects of high-hydrostatic pressure on inactivation of human norovirus and physical and sensory characteristics of oysters[J]. J Food Sci, 2015, 80(6): 1330-1335. doi: 10.1111/1750-3841.12899
    [40] MONTEIRO S, SANTOS R. Enzymatic and viability RT-qPCR assays for evaluation of enterovirus, hepatitis A virus and norovirus inactivation: implications for public health risk assessment[J]. J Appl Microbiol, 2018, 124(4): 965-976. doi: 10.1111/jam.13568
    [41] YE M, LI X, KINGSLEY D H, et al. Inactivation of human norovirus in contaminated oysters and clams by high hydrostatic pressure[J]. Appl Environ Microb, 2014, 80(7): 2248-2253. doi: 10.1128/AEM.04260-13
    [42] ALFANO-SOBSEY E, SWEAT D, HALL A, et al. Norovirus outbreak associated with undercooked oysters and secondary household transmission[J]. Epidemiol Infect, 2012, 140(2): 276-282. doi: 10.1017/S0950268811000665
    [43] MCLEOD C, POLO D, Le SAUX J C, et al. Depuration and relaying: a review on potential removal of norovirus from oysters[J]. Compr Rev Food Sci F, 2017, 16(4): 692-706. doi: 10.1111/1541-4337.12271
    [44] DROUAZ N, SCHAEFFER J, FARKAS T, et al. Tulane virus as a potential surrogate to mimic norovirus behavior in oysters[J]. Appl Environ Microb, 2015, 81(15): 5249-5256. doi: 10.1128/AEM.01067-15
    [45] UEKI Y, SHOJI M, SUTO A, et al. Persistence of caliciviruses in artificially contaminated oysters during depuration[J]. Appl Environ Microb, 2007, 73(17): 5698-5701. doi: 10.1128/AEM.00290-07
    [46] CHOI C, KINGSLEY D H. Temperature-dependent persistence of human norovirus within oysters (Crassostrea virginica)[J]. Food Environ Virol, 2016, 8(2): 141-147. doi: 10.1007/s12560-016-9234-8
    [47] 李汴生, 黄雅婷, 阮征. 非热杀菌技术在生食水产品中的应用研究进展[J]. 水产学报, 2020, 44(10): 1-18.
    [48] GAYÁN E, GOVERS S K, AERTSEN A J B C. Impact of high hydrostatic pressure on bacterial proteostasis[J]. Biophys Chem, 2017, 231: 3-9. doi: 10.1016/j.bpc.2017.03.005
    [49] SIDO R F, HUANG R, LIU C, et al. High hydrostatic pressure inactivation of murine norovirus and human noroviruses on green onions and in salsa[J]. Int J Food Microbiol, 2017, 242: 1-6. doi: 10.1016/j.ijfoodmicro.2016.11.003
    [50] LOU F, NEETOO H, CHEN H, et al. High hydrostatic pressure processing: a promising nonthermal technology to inactivate viruses in high-risk foods[J]. Annu Rev Food Sci T, 2015, 6: 389-409. doi: 10.1146/annurev-food-072514-104609
    [51] KINGSLEY D H. High pressure processing of bivalve shellfish and HPP's use as a virus intervention[J]. Foods, 2014, 3(2): 336-350. doi: 10.3390/foods3020336
    [52] BONFIM R C, OLIVEIRA F A D, GODOY R L D O, et al. A review on high hydrostatic pressure for bivalve mollusk processing: relevant aspects concerning safety and quality[J]. Food Sci Technol, 2019, 39(3): 515-523. doi: 10.1590/fst.26918
    [53] RENDUELES E, OMER M K, ALVSEIKE O, et al. Microbiological food safety assessment of high hydrostatic pressure processing: a review[J]. LWT-Food Sci Technol, 2011, 44(5): 1251-1260. doi: 10.1016/j.lwt.2010.11.001
    [54] HEINZ V, BUCKOW U R. Food preservation by high pressure[J]. J Consum Prot Food S, 2010, 5(1): 73-81. doi: 10.1007/s00003-009-0311-x
    [55] KOVAČ K, DIEZ-VALCARCE M, HERNANDEZ M, et al. High hydrostatic pressure as emergent technology for the elimination of foodborne viruses[J]. Trends Food Sci Tech, 2010, 21(11): 558-568. doi: 10.1016/j.jpgs.2010.08.002
    [56] VÁZQUEZ M, TORRES J A, GALLARDO J M, et al. Lipid hydrolysis and oxidation development in frozen mackerel (Scomber scombrus): effect of a high hydrostatic pressure pre-treatment[J]. Innov Food Sci Emerg, 2013, 18: 24-30. doi: 10.1016/j.ifset.2012.12.005
    [57] NARWANKAR S P, FLIMLIN G E, SCHAFFNER D W, et al. Microbial safety and consumer acceptability of high-pressure processed hard clams (Mercenaria mercenaria)[J]. J Food Sci, 2011, 76(6): 375-380. doi: 10.1111/j.1750-3841.2011.02258.x
    [58] KINGSLEY D H. High pressure processing and its application to the challenge of virus-contaminated foods[J]. Food Environ Virol, 2013, 5(1): 1-12. doi: 10.1007/s12560-012-9094-9
    [59] LI X, CHEN H, KINGSLEY D H. The influence of temperature, pH, and water immersion on the high hydrostatic pressure inactivation of GI.1 and GII.4 human noroviruses[J]. Int J Food Microbiol, 2013, 167(2): 138-143. doi: 10.1016/j.ijfoodmicro.2013.08.020
    [60] KINGSLEY D H, HOLLIMAN D R, CALCI K R, et al. Inactivation of a norovirus by high-pressure processing[J]. Appl Environ Microb, 2007, 73(2): 581-585. doi: 10.1128/AEM.02117-06
    [61] KINGSLEY D H, CALCI K, HOLLIMAN S, et al. High pressure inactivation of HAV within oysters: comparison of shucked oysters with whole-in-shell meats[J]. Food Environ Virol, 2009, 1(3/4): 137. doi: 10.1007/s12560-009-9018-5
    [62] TAKAHASHI M, OKAKURA Y, TAKAHASHI H, et al. Evaluation of inactivation of murine norovirus in inoculated shell oysters by high hydrostatic pressure treatment[J]. J Food Protect, 2019, 82(12): 2169-2173. doi: 10.4315/0362-028X.JFP-19-186
    [63] KIM S H, SHAHBAZ H M, PARK D, et al. A combined treatment of UV-assisted TiO2 photocatalysis and high hydrostatic pressure to inactivate internalized murine norovirus[J]. Innov Food Sci Emerg, 2017, 39: 188-196. doi: 10.1016/j.ifset.2016.11.015
  • 加载中
计量
  • 文章访问数:  159
  • HTML全文浏览量:  36
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-21
  • 修回日期:  2021-03-25
  • 录用日期:  2021-04-07
  • 网络出版日期:  2021-04-12

目录

    /

    返回文章
    返回