Correlation analysis of light intensity and growth, photosynthetic pigment, color value of Betaphycus gelatinae
-
摘要: 文章探讨了不同光照强度 (1 000、3 000、5 000、7 000和9 000 lx) 下琼枝藻 (Betaphycus gelatinae) 的生长、光合色素及颜色变化,基于CSE-1成像色度检测分析系统,研究了琼枝藻颜色参数L*a*b* (CIE 1976) 与光照强度、生长、光合色素的相关性。结果显示,琼枝藻的相对生长速率和增重率均随光照强度的增加显著增大,适宜生长的光照强度为7 000~9 000 lx,光照强度为1 000 lx时琼枝藻无明显生长。叶绿素a (Chl-a)、类胡萝卜素 (Car)、藻红蛋白 (PE) 和藻蓝蛋白 (PC) 含量总体上随光照强度的增加呈下降趋势。随着光照强度的增加,琼枝藻的颜色由红褐色逐渐变为绿色,三刺激值XYZ在CIE 1931色度图上呈现明显的分布差异。光照强度与明度 (L*) 呈显著正相关 (P<0.05),与红绿色度 (a*) 呈极显著负相关 (P<0.01);生长速率与L*、黄蓝色度 (b*) 均呈显著正相关 (P<0.05);Chl-a与L*呈显著负相关 (P<0.05),与a*呈显著正相关 (P<0.05);PE和PC均与a*呈显著正相关 (P<0.05)。Abstract: We investigated the growth, photosynthetic pigment and color change of Betaphycus gelatinae at different light intensities (1 000, 3 000, 5 000, 7 000 and 9 000 lx). Based on CSE-1 imaging chromaticity detection and analysis, we studied the correlation of color parameter L*a*b*(CIE 1976) with light intensity, growth and photosynthetic pigment. The results show that the relative growth rate and weight gain rate increased significantly with the increase of light intensity. The suitable light intensity for growth was 7 000−9000 lx. However, when the light intensity was 1 000 lx, there was no obvious growth of B. gelatinae. With the increase of light intensity, the contents of chlorophyll a, carotenoids, phycoerythrin and phycocyanin generally decreased, and the color of B. gelatinae gradually changed from reddish brown to green. The tristimulus values (XYZ) showed a significant distribution difference on the CIE 1931 chromaticity diagram at different light intensities. Light intensity was significantly positively correlated with lightness L*(P<0.05), but significantly negatively correlated with red-green value a*(P<0.01). There was a significant positive correlation between relative growth rate with lightness L* and yellow-blue value b*(P<0.05). Chlorophyll a was significantly negatively correlated with lightness L*(P<0.05), but significantly positively correlated with red-green value a*(P<0.05). Both phycoerythrin and phycocyanin were significantly positively correlated with the red-green value a*(P<0.05).
-
Key words:
- Betaphycus gelatinae /
- Light intensity /
- Growth /
- Photosynthetic pigment /
- Color parameters /
- Correlation analysis
-
图 3 不同光照强度下琼枝藻的色素质量分数
不同小写字母间表示差异显著 (P<0.05);不同大写字母间表示差异显著 (P<0.05);图4同此。
Figure 3. Pigment mass fraction of B. gelatinae at different light intensities
Different lowercase letters indicate significant difference (P<0.05). Different capital letters indicate significant difference (P<0.05). The same case in Figure 4.
表 1 不同光照强度下琼枝藻的明度、红绿色度和黄蓝色度
Table 1. L*a*b* values of B. gelatinae at different light intensities
光照强度
Light intensity/lx数量
Number明度 L*
Lightness value红绿色度 a*
Red-green value黄蓝色度 b*
Yellow-blue value1 000 15 26.14±5.10a 28.24±5.98a 12.49±3.68a 3 000 15 37.73±6.37b 16.88±2.17b 29.67±3.75bc 5 000 15 45.57±8.98cd 6.21±3.06c 26.97±4.68b 7 000 15 43.31±2.56bc −1.29±3.99d 35.01±4.51d 9 000 15 50.64±4.58d −10.28±2.41e 34.25±5.74cd 注:同列不同字母间存在显著性差异 (P<0.05)。 Note: Values with different letters within the same column indicate significant difference (P<0.05). 表 2 不同光照强度下琼枝藻颜色的色差∆Eab
Table 2. ∆Eab values of B. gelatinae at different light intensities
光照强度
Light intensity/lx1 000 3 000 5 000 7 000 3 000 23.63 5 000 32.75 13.51 7 000 40.92 19.75 11.22 9 000 50.57 30.42 18.72 11.62 表 3 琼枝藻的颜色参数 (明度、红绿色度、黄蓝色度) 与光照强度、相对生长速率、光合色素的相关性
Table 3. Correlation between L*a*b* values with light intensity, RGR and photosynthetic pigment
参数
Parameter光照强度
Light intensity相对生长速率
RGR叶绿素a
Chl-a类胡萝卜素
Car藻红蛋白
PE藻蓝蛋白
PC明度 L* Lightness value 0.922* 0.933* −0.883* −0.389 −0.863 −0.857 红绿色度 a* Red-green value −0.997** −0.868 0.952* 0.558 0.910* 0.908* 黄蓝色度 b* Yellow-blue value 0.848 0.968** −0.712 −0.087 −0.682 −0.686 注:*. 显著差异 (P<0.05);**. 极显著差异 (P<0.01)。
Note: *. Significant difference (P<0.05); **. Very significant difference (P<0.01). -
[1] 曾呈奎, 毕列爵. 藻类名词及名称[M]. 2版. 北京: 科学出版社, 2005: 53. [2] 钱树本. 海藻学[M]. 青岛: 中国海洋大学出版社, 2013: 244-246. [3] 刘涛. 南海常见大型海藻图鉴[M]. 北京: 海洋出版社, 2017: 88. [4] 匡梅, 曾呈奎, 夏邦美. 中国麒麟菜族的分类研究[J]. 海洋科学集刊, 1999(41): 168-189. [5] 秦晓娟. D-半乳糖-6-硫酸化酶的分离纯化及κ-卡拉胶改性机理研究[D]. 无锡: 江南大学, 2014: 7-10. [6] 李继伟, 杨贤庆, 潘创, 等. 琼枝麒麟菜的营养成分分析与评价[J]. 食品与发酵工业, 2020, 46(15): 265-269. [7] 邓春梅, 吴祖件, 何兰珍, 等. 碱法预处理琼枝麒麟菜提取卡拉胶的工艺优化[J]. 食品工业科技, 2017, 38(22): 178-183. [8] 王晨, 赵小亮, 李国云, 等. 不同来源麒麟菜多糖的提取分离和结构比较[J]. 中国海洋药物, 2017, 36(2): 7-14. [9] 邹沐平, 董栋, 王怀玲, 等. 琼枝麒麟菜多糖抗呼吸道病毒活性研究[J]. 海洋科学, 2015, 39(12): 15-20. doi: 10.11759/hykx20141128001 [10] 余华军, 伍俊, 吴尚, 等. 麒麟菜多肽对血小板聚集及角叉菜胶诱导的小鼠尾部血栓形成的影响[J]. 解放军医学杂志, 2018, 43(2): 96-100. doi: 10.11855/j.issn.0577-7402.2018.02.02 [11] SAITO H, TAMRIN M L. Antimycotic activity of seaweed extracts (Caulerpa lentillifera and Eucheuma cottonii) against two genera of marine oomycetes, Lagenidium spp. and Haliphthoros spp.[J]. Biocontrol Sci, 2019, 24(2): 73-80. doi: 10.4265/bio.24.73 [12] SUDIRMAN S, CHANG H W, CHEN C K, et al. A dietary polysaccharide from Eucheuma cottonii downregulates proinflammatory cytokines and ameliorates osteoarthritis-associated cartilage degradation in obese rats[J]. Food Funct, 2019, 10(9): 10-39. [13] 何翠翠, 张文, 魏志远, 等. 海南省海藻产业发展形势与对策[J]. 热带农业科学, 2019, 39(9): 107-113. [14] 方哲, 刘敏, 梁磊, 等. 海水相对密度对琼枝麒麟菜的生长及其卡拉胶、色素含量的影响[J]. 热带生物学报, 2012, 3(3): 204-207. doi: 10.3969/j.issn.1674-7054.2012.03.003 [15] 农业农村部渔业渔政管理局. 2019 中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2019: 23. [16] 梁磊, 方哲, 黄惠琴, 等. 温度对琼枝麒麟菜生长及色素含量的影响[J]. 海洋科学, 2014, 38(3): 87-90. doi: 10.11759/hykx20100406002 [17] 邹沐平, 董栋, 王怀玲, 等. 琼枝麒麟菜多糖抗单纯疱疹病毒2型活性研究[J]. 中国海洋药物, 2015, 34(4): 13-18. [18] 方哲, 刘敏, 梁磊, 等. 光照强度对琼枝麒麟菜生长及色素含量的影响[J]. 水产养殖, 2012, 33(10): 44-46. doi: 10.3969/j.issn.1004-2091.2012.10.010 [19] 杨湘勤, 丁敬敬, 黄勃, 等. 琼枝麒麟菜养殖方式及其效益分析[J]. 渔业现代化, 2015, 42(6): 16-19. doi: 10.3969/j.issn.1007-9580.2015.06.004 [20] 杨红岩, 宋新伟, 闫昊, 等. 光强、温度和N、P浓度对石花菜幼孢子体生长的影响[J]. 海洋湖沼通报, 2020(5): 164-169. [21] 邵飞, 费岚, 吴海龙, 等. 环境因子及藻体密度对条斑紫菜生长与氮磷去除效率的影响[J]. 生态学报, 2014, 34(21): 6164-6171. [22] 张建伟, 刘媛媛, 吴海龙, 等. 环境因子对瓦氏马尾藻生长及光合作用的影响[J]. 中国水产科学, 2014, 21(6): 1227-1235. [23] 童立豪, 吴翔宇, 曾俊, 等. 光质对琼枝生长和生理特性的影响[J]. 中国渔业质量与标准, 2020, 10(6): 40-46. [24] PORRA R J. The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b[J]. Photosynth Res, 2002, 73(1/2/3): 149-156. [25] PARSONS T R, STRICKLAND J D H. Discussion of spectrophotometric determination of marine plankton pigments, with revised equations of ascertaining chlorophyll a and carotenoids[J]. J Mar Res, 1963, 21(3): 155-163. [26] BEER S, ESHEL A. Determining phycoerythrin and phycocyanin concentrations in aqueous crude extracts of red algae[J]. Aust J Mar Freshw Res, 1985, 36(6): 785-792. doi: 10.1071/MF9850785 [27] AI X Z, GUO Y K, MA X Z, et al. Photosynthetic characteristics and ultrastructure of chloroplast of cucumber under low light density in solar-greenhouse[J]. Agric Sci Chin, 2004, 37(2): 129-135. [28] DASILVA M F, CASAZZA A A, FERRARI P F, et al. A new bioenergetic and thermodynamic approach to batch photoautotrophic growth of Arthrospira (Spirulina) platensis in different photobioreactors and under different light conditions[J]. Bioresour Technol, 2016, 207: 220-228. doi: 10.1016/j.biortech.2016.01.128 [29] 陈伟洲, 钟志海, 刘涛, 等. 光照强度和温度对智利江蓠生长及生化组分的影响[J]. 海洋湖沼通报, 2015(1): 28-34. [30] IBRAHIM M H, JAAFAR H Z E, KARIMI E, et al. Allocation of secondary metabolites, photosynthetic capacity, and antioxidant activity of Kacip Fatimah (Labisia pumila Benth) in response to CO2 and light intensity[J]. Sci World J, 2014(1): 1-13. [31] LOCKHART B R, GARDINER E S, HODGES J D, et al. Carbon allocation and morphology of cherrybark oak seedlings and sprouts under three light regimes[J]. Ann For Sci, 2008, 65(8): 801. doi: 10.1051/forest:2008064 [32] 赵素芬, 何培民. 光照强度和盐度对长心卡帕藻生长的影响[J]. 热带海洋学报, 2009, 28(1): 74-79. doi: 10.3969/j.issn.1009-5470.2009.01.012 [33] 霍元子, 徐姗婻, 张建恒, 等. 真江蓠杭州湾海域栽培试验及生态因子对藻体生长的影响[J]. 海洋科学, 2010, 34(8): 23-28. [34] 黄中坚, 宋志民, 杨晓, 等. 生态因子对芋根江蓠的生长及生化组分的影响[J]. 南方水产科学, 2014, 10(1): 27-34. doi: 10.3969/j.issn.2095-0780.2014.01.005 [35] 林贞贤, 宫相忠, 李大鹏. 光照和营养盐胁迫对龙须菜生长及生化组成的影响[J]. 海洋科学, 2007, 31(11): 22-26. doi: 10.3969/j.issn.1000-3096.2007.11.006 [36] 李映霞. 三种红藻光合作用色素系统的比较研究[D]. 青岛: 中国科学院研究生院 (海洋研究所), 2007: 2-4. [37] BEALE S I, APPLEMAN D. Chlorophyll synthesis in Chlorella: regulation by degree of light limitation of growth[J]. Plant Physiol, 1971, 47(2): 230-235. doi: 10.1104/pp.47.2.230 [38] TANAKA Y, SASAKI N, OHMIYA A. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids[J]. Plant J, 2008, 54(4): 733-749. doi: 10.1111/j.1365-313X.2008.03447.x [39] MILLER R, OWENS S J, RORSLETT B. Plants and colour: flowers and pollination[J]. Optics Laser Technol, 2011, 43(2): 282-294. doi: 10.1016/j.optlastec.2008.12.018 [40] 李红秋, 刘石军. 光强度和光照时间对色叶树叶色变化的影响[J]. 植物研究, 1998(2): 3-5. -