留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中华鲎的食物组成及营养位置分析

郭清扬 谷阳光 鲍虞园 李银康 周传江 颉晓勇

郭清扬, 谷阳光, 鲍虞园, 李银康, 周传江, 颉晓勇. 中华鲎的食物组成及营养位置分析[J]. 南方水产科学. doi: 10.12131/20200234
引用本文: 郭清扬, 谷阳光, 鲍虞园, 李银康, 周传江, 颉晓勇. 中华鲎的食物组成及营养位置分析[J]. 南方水产科学. doi: 10.12131/20200234
Qingyang GUO, Yangguang GU, Yuyuan BAO, Yinkang LI, Chuanjiang ZHOU, Xiaoyong XIE. Dietary composition and trophic position of Tachypleus tridentatus[J]. South China Fisheries Science. doi: 10.12131/20200234
Citation: Qingyang GUO, Yangguang GU, Yuyuan BAO, Yinkang LI, Chuanjiang ZHOU, Xiaoyong XIE. Dietary composition and trophic position of Tachypleus tridentatus[J]. South China Fisheries Science. doi: 10.12131/20200234

中华鲎的食物组成及营养位置分析

doi: 10.12131/20200234
基金项目: 国家重点研发计划“蓝色粮仓科技创新”重点专项 (2019YFD0901105);南方海洋科学与工程广东省实验室 (广州) 人才团队引进重大专项 (GML2019ZD0402);中国水产科学研究院南海水产研究所中央级公益性科研院所基本科研业务费专项资金资助 (2019TS21)
详细信息
    作者简介:

    郭清扬 (1995—),男,硕士研究生,研究方向为鲎生物学。E-mail: guoqingyang2018@163.com

    通讯作者:

    颉晓勇 (1976—),男,博士,副研究员,从事水产养殖和种质资源保护研究。E-mail: xyxie@scsfri.ac.cn

  • 中图分类号: S 917.4

Dietary composition and trophic position of Tachypleus tridentatus

  • 摘要: 通过对北部湾海域采集的中华鲎 (Tachypleus tridentatus) 样品及其食物网链中具有食源可能性的种类 (虾类、蟹类、双壳类和鱼类) 进行碳、氮稳定同位素(δ13C、δ15N) 比值测定,采用稳定同位素混合模型 (SIAR) 分析北部湾中华鲎食物组成及其营养位置。结果显示,中华鲎δ13C均值为(−17.11±0.03)‰,δ15N均值为(12.14±0.20)‰。SIAR模型显示双壳类为中华鲎的主要食物来源,其平均贡献率为31.27%;其次为鱼类,平均贡献率为25.91%;蟹类平均贡献率占比为23.50%;虾类平均贡献率占比最低 (19.32%)。营养位置分析显示中华鲎营养位置为2.02±0.06。该研究涉及的中华鲎潜在食源样本中,鱼类、虾类和蟹类的营养位置分别为2.13±0.51、2.36±0.09和2.61±0.21。营养位置分析表明中华鲎在自然生态系统食物网中处于较为弱势的地位,在已然濒危的情况下迫切需要科学的保护措施。
  • 图  1  潜在食源的氮稳定同位素和碳稳定同位素 (均值±标准差)

    Figure  1.  δ15N and δ13C values of potential food ($ \overline { X}\pm { \rm {SD}} $)

    表  1  调查区域取样断面信息

    Table  1.   Imformation of sampling section

    断面  
    Section  
    高潮区
    High tidal
    中潮区
    Mid tidal
    低潮区
    Low tidal
    榕根山 RGS 109°68'81.80"E, 21°49'51.29"N 109°68'58.74"E, 21°49'02.05"N 109°68'72.23"E, 21°49'22.69"N
    沙田 ST 109°39'25.06"E, 21°38'57.84"N 109°39'23.26"E, 21°30'50.46"N 109°39'19.21"E, 21°30'43.43"N
    坡尾底 PWD 109°55'74.47"E, 21°51'50.08"N 109°55'56.29"E, 21°51'55.00"N 109°33'08.02"E, 21°31'03.72"N
    西背岭 XBL 109°10'23.31"E, 21°24'49.89"N 109°10'52.16"E, 21°24'15.1"N 109°10'53.78"E, 21°23'58.8"N
    下村 XC 109°11'36.2"E, 21°25'8.91"N 109°11'55.5"E, 21°24'40.29"N 109°11'46.55"E, 21°23'42.33"N
    竹林盐场 ZLYC 109°17'19.49"E, 21°26'13.57"N 109°29'29.26"E, 21°42'65.97"N 109°29'61.36"E, 21°42'07.73"N
    三娘湾 SNW 108°49'30.01"E, 21°37'32.07"N 108°49'24.94"E, 21°37'30.07"N 108°49'03.02"E, 21°36'47.14"N
    草潭镇 CTZ 109°48'47.14"E, 21°21'6.25"N 109°48'52.29"E, 21°21'42.88"N 109°48'49.99"E, 21°22'5.19"N
    渔洲坪 YZP 108°37'71.65"E, 21°64'41.51"N 108°38'27.04"E, 21°63'84.08"N 108°37'78.70"E, 21°63'33.43"N
    怪石滩 GST 108°13'03.01"E, 21°29'58.81"N 108°13'03.55"E, 21°29'59.41"N 108°21'75.11"E, 21°49'98.68"N
    下载: 导出CSV

    表  2  中华鲎及潜在食源的氮、碳稳定同位素及营养位置

    Table  2.   δ15N, δ13C values and trophic position of T. tridentatus and their potential food $ \overline { X}{\bf \pm {SD}}$

    名称
    Sample
    氮稳定同位素
    δ15N/‰
    碳稳定同位素
    δ13C/‰
    营养位置
    Trophic
    position
    中华鲎 T. tridentatus 12.14±0.20 −17.11±0.03 2.02±0.06
    鱼类 Fish 12.53±1.80 −15.37±2.16 2.13±0.51
    虾类 Shrimp 13.36±0.33 −11.75±2.11 2.36±0.09
    蟹类 Crab 14.22±0.75 −15.55±0.53 2.61±0.21
    双壳类 Bivalve 12.07±0.35 −17.55±0.57 2.0
    下载: 导出CSV
  • [1] 翁朝红, 谢仰杰, 肖志群, 等. 福建及中国其他沿岸海域中国鲎资源分布现状调查[J]. 动物学杂志, 2012, 47(3): 40-48.
    [2] 谢蕙莲, 范航清, 廖永岩, 等. 鲎保育的三赢策略[J]. 广西科学, 2017, 5: 87-93.
    [3] XIE X Y, WU Z, WANG C C, et al. Nursery habitat for Asian horseshoe crabs along the northern Beibu Gulf, China: implications for conservation management under baseline gaps[J]. Aquat Conserv: Mar Freshw Ecosyst, 2020, 30: 260-272. doi: 10.1002/aqc.3259
    [4] MALONEY T, PHELAN R, SIMMONS N. Saving the horseshoe crab: a synthetic alternative to horseshoe crab blood for endotoxin detection[J]. PLoS Biol, 2018, 16(10): 1-15.
    [5] JAWAHIR A R N, SAMSUR M, SHABDIN M L, et al. Distribution of two species of Asian horseshoe crabs at west coast of Sarawak's Waters, East Malaysia[J]. Egypt J Aquat Res, 2017, 43(2): 135-140. doi: 10.1016/j.ejar.2017.03.002
    [6] LIAO Y Y, HSIEH H L, XU S, et al. Wisdom of crowds reveals decline of Asian horseshoe crabs in Beibu Gulf, China[J]. Oryx, 2019, 53(2): 222-229. doi: 10.1017/S003060531700117X
    [7] SHINGATE P, RAVI V, PRASAD A, et al. Chromosome-level assembly of the horseshoe crab genome provides insights into its genome evolution[J]. Nat Commun, 2020, 11: 2322. doi: 10.1038/s41467-020-16180-1
    [8] TINKER-KULBERG R, DELLINGER A L, GENTIT L C, et al. Evaluation of indoor and outdoor aquaculture systems as alternatives to harvesting hemolymph from random wild capture of horseshoe crabs[J]. Front Mar Sci, 2020, 10(7): 568628. doi: 10.3389/fmars.2020.568628
    [9] TINKER-KULBERG R, DELLINGER A, BRADY T E. Effects of diet on the biochemical properties of limulus amebocyte lysate from horseshoe crabs in an aquaculture setting[J]. Front Mar Sci, 2020, 10(7): 541604. doi: 10.3389/fmars.2020.541604
    [10] JENNINGS S, MOLEN J V D. Trophic levels of marine consumers from nitrogen stable isotope analysis: estimation and uncertainty[J]. ICES J Mar Sci, 2015, 72(8): 2289-2300. doi: 10.1093/icesjms/fsv120
    [11] 李由明, 黄翔鹄, 刘楚吾. 碳氮稳定同位素技术在动物食性分析中的应用[J]. 广东海洋大学学报, 2017, 27(4): 99-103.
    [12] 宁加佳, 杜飞雁, 李亚芳, 等. 红海湾远海梭子蟹Portunus pelagicus的食物组成及营养位置分析[J]. 海洋学报, 2016, 38(10): 62-69.
    [13] RAW J L, PERISSINOTTO R, MIRANDA N A F, et al. Diet of Melanoides tuberculata (Müller, 1774) from subtropical coastal lakes: evidence from stable isotope (δ13C and δ15N) analyses[J]. Limnologica, 2016, 59: 116-123. doi: 10.1016/j.limno.2016.05.004
    [14] 张文博, 黄洪辉, 李纯厚, 等. 华南典型海湾主要渔业生物碳氮稳定同位素研究[J]. 南方水产科学, 2019, 15(5): 9-14. doi: 10.12131/20180173
    [15] PHILLIPS D L, INGER R, BEARHOP S, et al. Best practices for use of stable isotope mixing models in food-web studies[J]. Can J Zool, 2014, 92(10): 823-835. doi: 10.1139/cjz-2014-0127
    [16] 孙明, 王彬, 李玉龙, 等. 基于碳氮稳定同位素技术研究辽东湾海蜇的食性和营养级[J]. 应用生态学报, 2016, 27(4): 1103-1108.
    [17] NELSON B R, SATYANARAYANA B, ZHONG J M H, et al. Episodic human activities and seasonal impacts on the Tachypleus gigas (Müller, 1785) population at Tanjung Selangor in Peninsular Malaysia[J]. Estuar Coast Shelf Sci, 2015, 164: 313-323.
    [18] LANI M N, RIVAN N F M, ISMAIL A, et al. Comparative study of physico-chemical analyses of different water resources in Setiu Wetland, Terengganu[M]//ABDULLAH M T, MOHAMMAD A, ZALIPAH M N, et al. Greater Kenyir Landscapes. Cham: Springer, 2019: 25-37.
    [19] BURGER J, TSIPOURA N, NILES L, et al. Heavy metals in biota in Delaware Bay, NJ: developing a food web approach to contaminants[J]. Toxics, 2019, 7(2): 1-16.
    [20] WEST J B, BOWEN G J, CERLING T E, et al. Stable isotopes as one of nature's ecological recorders[J]. Trend Ecol Evol, 2006, 21(7): 408-414. doi: 10.1016/j.tree.2006.04.002
    [21] 洪水根. 中国鲎生物学研究[M]. 厦门: 厦门大学出版社, 2011: 77-81.
    [22] 沙金庚. 中国双壳类古生物学的百年发展[J]. 生物进化, 2019, 52(4): 24-38.
    [23] 鲍虞园, 叶国玲, 颉晓勇. 中国鲎人工繁育及1龄稚鲎形态性状对体质量的影响[J]. 渔业科学进展, 2020, 41(4): 77-84.
    [24] 邹丽珍. 中国鲎幼鲎人工养殖饵料初步研究[J]. 福建农业科技, 2016(9): 32-35.
    [25] ZHOU Y, LIANG Y, YAN Q, et al. The draft genome of horseshoe crab Tachypleus tridentatus reveals its evolutionary scenario and well-developed innate immunity[J]. BMC Genomics, 2020, 21(1): 1-38. doi: 10.1186/s12864-019-6419-1
    [26] 蔡德陵, 张淑芳, 张经. 稳定碳、氮同位素在生态系统研究中的应用[J]. 青岛海洋大学学报 (自然科学版), 2002, 32(2): 287-295.
    [27] 陈展彦, 武海涛, 王云彪, 等. 基于稳定同位素的湿地食物源判定和食物网构建研究进展[J]. 应用生态学报, 2017, 28(7): 2389-2398.
    [28] POST D M. Using stable isotopes to estimate trophic position: models, methods, and assumptions[J]. Ecology, 2002, 83(3): 703-718. doi: 10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2
    [29] 全秋梅, 肖雅元, 徐姗楠, 等. 胶州湾大型底栖动物群落结构季节变化及其与环境因子的关系[J]. 生态学杂志, 2020, 39(12): 4110-4120.
    [30] DUFFY R E, GODWIN I, PURVIS I, et al. The contribution of naturally occurring food items to the diet of Bidyanus bidyanus when fed differing formulated diets[J]. J Appl Aquacult, 2013, 25(3): 206-218. doi: 10.1080/10454438.2013.811950
    [31] HAYS G C, DOYLE T K, HOUGHTON J D R. A paradigm shift in the trophic importance of jellyfish[J]. Trend Ecol Evol, 2018, 33, 11: 874-884.
    [32] DALSGAARD J, ST. JOHN M, KATTNER G, et al. Fatty acid trophic markers in the pelagic marine environment[J]. Adv Mar Biol, 2003, 46: 225-340.
    [33] CAMIN F, BONTEMPO L, PERINI M, et al. Stable isotope ratio analysis for assessing the authenticity of food of animal origin[J]. Comp Rev Food Sci Food Saf, 2016, 15(5): 868-877. doi: 10.1111/1541-4337.12219
  • 加载中
图(1) / 表(2)
计量
  • 文章访问数:  136
  • HTML全文浏览量:  36
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-14
  • 修回日期:  2021-03-05
  • 录用日期:  2021-03-24
  • 网络出版日期:  2021-04-13

目录

    /

    返回文章
    返回