Effects of inositol on growth and metabolism for juvenile Litopenaeus vannamei at different salinities
-
摘要: 为研究肌醇对不同盐度 (4和28) 条件下凡纳滨对虾 (Litopenaeus vannamei) 幼虾生长、血清生化指标和非特异性免疫的影响,选取初始体质量为 (0.75±0.03) g的凡纳滨对虾为研究对象,以添加0、100、200、400、800和1 600 mg∙kg−1肌醇的6种等氮等脂饲料持续投喂10 周。结果表明,高盐度对虾终末体质量、增重率、成活率、特定生长率、蛋白质效率、蛋白质净利用率、总胆固醇含量、酸性磷酸酶、碱性磷酸酶、总超氧化物歧化酶和一氧化氮合酶显著高于低盐度 (P<0.05),饲料系数和水分则相反。饲料系数和总胆固醇含量随饲料中肌醇水平的升高而降低,终末体质量、增重率、成活率、特定生长率、蛋白质效率和蛋白质净利用率则相反,肌醇添加组的肝体比、酸性磷酸酶和碱性磷酸酶活性显著高于对照组 (P<0.05)。综上,饲料中添加肌醇可促进凡纳滨对虾的生长发育,提高其成活率和非特异性免疫力;低盐条件下凡纳滨对虾的生长发育和免疫力受抑制,肌醇水平不低于100 mg∙kg−1能使其生长发育恢复至高盐水平,不低于200 mg∙kg−1可在一定程度上提高其免疫力。Abstract: To study the effects of inositol on the growth, serum biochemical indices, and non-specific immunity of juvenile Litopenaeus vannamei at different salinities (4 and 28), we fed the shrimps of the initial body mass of (0.75±0.00) g with six diets containing 0, 100, 200, 400, 800 and 1 600 mg∙kg−1 inositol for 10 weeks, respectively. The results show that the final body mass, weight gain rate, survival rate, specific growth rate, protein efficiency, net protein utilization, total cholesterol, acid phosphatase, alkaline phosphatase, total superoxide dismutase and nitric oxide synthase were significantly higher at high salinity than at low salinity (P<0.05); while the feed coefficient and moisture were the reverse. The feed coefficient and total cholesterol content decreased with increasing inositol levels in the diet, but the final body mass, weight gain rate, survival rate, specific growth rate, protein efficiency and net protein utilization increased, and the hepatopancreas somatic indices, acid phosphatase and alkaline phosphatase were significantly higher in inositol-added groups than in the control group (P<0.05). In summary, feeding inositol diets are recommended to improve shrimp's growth, survival and immutability; shrimp's growth and immunity are suppressed at low salinity; feeding higher than 100 mg∙kg−1 inositol diets can restore the growth to a high salinity level, and feeding higher than 200 mg∙kg−1 inositol diets can improve shrimp's immunity.
-
Key words:
- Litopenaeus vannamei /
- Inositol /
- Salinity /
- Growth /
- Serum biochemical index /
- Non-specific immunity
-
表 1 实验饲料组成及营养水平 (干物质基础)
Table 1. Composition and nutrient levels of experimental diets (dry mass basis)
原料
Ingredient质量分数
Mass fraction/%红鱼粉 Brown fish meal 16.00 酪蛋白 Casein 28.00 明胶 Gelatin 7.00 高筋面粉 Bread flour 25.00 磷脂 Phospholipid 2.00 鱼油 Fish oil 2.00 豆油 Soy oil 2.00 磷酸二氢钙 Ca(H2PO4)2 1.50 VC单聚磷酸酯 VC monopoly phosphate 0.02 去肌醇维生素预混料 Vitamin premix① 1.00 矿物质预混料 Mineral premix② 2.00 胆碱 Choline 0.10 微晶纤维素+肌醇 Microcrystalline cellulose + Inositol 13.38 合计 Total 100.00 营养成分 Nutritional ingredient 粗蛋白 Crude protein 40.00 粗脂肪 Crude fat 6.50 注:① 每千克饲料中维生素预混料各组分质量 (mg):泛酸钙61.00,氰钴胺素0.10,纤维素1389.65,核黄素25.00,烟酸201.00,VD 120.00,叶酸 6.25,VA 10,VE 99.00,生物素2.50,VK 10.00,VB1 25.50,吡哆醇50.00。② 每千克饲料中矿物质预混料各组分质量 (mg):NaSeO3 4.00,KIO4 0.06,CuSO4·5H2O 39.68,MnSO4·7H2O 0.24,MgSO4·H2O 24.86,Ca(PO4)2 160.00,KCl 30.66,沸石粉1648.38,柠檬酸铁 27.42,CoCl2·6H2O 8.14,ZnSO4·7H2O 56.56。 Note: ① Content of each component of vitamin premix per kg of feed (mg): calcium pantothenate 61.00, cyanocobalamine 0.10, cellulose 1389.65, riboflavin 25.00, niacin 201.00, VD 120.00, folic acid 6.25, VA 10, VE 99.00, biotin 2.50, VK 10.00, VB1 25.50, pyridoxine 50.00. ② Content of each component of mineral premix per kg of feed (mg): NaSeO3 4.00, KIO4 0.06, CuSO4·5H2O 39.68, MnSO4·7H2O 0.24, MgSO4·H2O 24.86, Ca(PO4)2 160.00, KCl 30.66, zeolite powder 1648.38, ferric citrate 27.42, CoCl2·6H2O 8.14, ZnSO4·7H2O 56.56. 表 2 肌醇对凡纳滨对虾幼虾生长性能的影响
Table 2. Effects of inositol on growth performance for juvenile L. vannamei
组别
Group终末体质量
FW/g增重率
WG/%成活率
SR/%特定生长率
SGR/%饲料系数
FC蛋白质效率
PER每个处理的平均值 Individual treatment means LJ0 5.75±0.77e 672.19±106.85e 63.33±7.63d 2.91±0.19g 6.77±1.80a 0.32±0.09g LJ1 9.16±0.52cd 1 129.56±68.51cd 69.16±12.33cd 3.58±0.08ef 3.51±0.76b 0.59±0.11f LJ2 9.14±0.19cd 1 126.01±28.16cd 85.00±5.00ab 3.58±0.03ef 2.70±0.14bcd 0.76±0.03e LJ3 9.90±0.46c 1 229.81±61.35c 92.50±4.33a 3.69±0.06de 2.23±0.14cde 0.91±0.05cd LJ4 10.91±0.29b 1 358.14±39.26b 88.33±6.29ab 3.82±0.03cd 2.13±0.12cde 0.95±0.05c LJ5 11.54±0.27b 1 446.59±30.24b 93.33±2.88a 3.91±0.02bc 1.79±0.01de 1.10±0.01b HJ0 8.84±0.19d 1 079.98±42.62d 78.33±7.63bc 3.45±0.02f 3.01±0.27bc 0.63±0.05f HJ1 9.45±0.37cd 1 163.08±85.80cd 90.00±4.33a 3.62±0.09e 2.45±0.28cde 0.81±0.09de HJ2 11.02±0.17b 1 369.97±39.30b 92.50±2.50a 3.79±0.05cd 1.94±0.05cde 0.98±0.02c HJ3 11.45±0.47b 1 432.89±115.96b 93.33±2.88a 3.91±0.07bc 1.81±0.09de 1.13±0.05b HJ4 12.49±0.17a 1 570.03±38.17a 89.16±1.44a 4.02±0.03ab 1.65±0.04de 1.15±0.03b HJ5 12.96±0.13a 1 631.10±35.36a 95.83±1.44a 4.07±0.02a 1.42±0.03e 1.34±0.02a 单个因子的平均值 Means of single factor J0 7.29E 876.09E 70.83B 3.18D 4.89A 0.47E J1 9.30D 1 146.32D 79.58B 3.60C 2.98B 0.70D J2 10.08C 1 247.99C 88.75A 3.68C 2.32BC 0.87C J3 10.68B 1 331.35B 92.91A 3.80B 2.02C 1.02B J4 11.70A 1 464.09A 88.75A 3.92A 1.89C 1.05B J5 12.25A 1 538.84A 94.58A 3.99A 1.60C 1.22A L 9.40x 1 160.38x 81.94x 3.58x 3.19y 0.77x H 11.04y 1 374.51y 89.96y 3.81y 2.04x 1.01y 双因素分析P值 P-value of Two-way ANOVA 盐度因素 Salinity factor 0.000 0.000 0.000 0.000 0.000 0.000 肌醇因素 Inositol factor 0.000 0.000 0.000 0.000 0.000 0.000 交互作用 Interaction 0.002 0.002 0.026 0.000 0.000 0.652 注:同列的不同小写字母表示差异显著 (P<0.05);A、B、C、D、E代表饲料因素;x、y代表盐度因素;下表同此。 Note: Values with different lowercase letters within the same column have significant difference (P<0.05). The diet factor is represented by A, B, C, D and E; the salinity factor is represented by x and y, the same below. 表 3 肌醇对凡纳滨对虾幼虾体成分的影响 (干物质基础)
Table 3. Effects of inositol on body composition for juvenile L. vannamei (dry matter basis)
组别
Group肝体比
HSI水分
Moisture/%粗蛋白
Crude protein/%粗脂肪
Crude lipid/%粗灰分
Ash/%蛋白质净利用率
NPU/%每个处理的平均值 Individual treatment means LJ0 3.15±0.11c 76.63±0.78abc 75.57±0.20 12.46±1.58 13.27±0.48 4.49±1.32g LJ1 3.63±0.24ab 77.64±1.89a 75.91±1.86 11.49±0.25 13.15±0.42 8.75±1.92f LJ2 3.82±0.1ab 76.83±0.71ab 76.37±1.10 10.42±1.75 13.24±0.25 10.88±0.65e LJ3 3.81±0.07ab 75.44±0.11bcde 76.03±1.63 11.78±2.43 12.98±0.49 13.10±1.02d LJ4 3.90±0.02a 75.92±0.13bcde 76.39±0.76 10.97±0.16 13.13±0.45 13.55±0.64d LJ5 3.64±0.10ab 76.14±0.71 bcd 76.33±0.48 11.13±0.84 12.92±0.04 16.38±0.07bc HJ0 3.45±0.13bc 74.77±0.50de 75.57±0.20 12.46±0.91 13.27±0.28 10.16±0.86ef HJ1 3.45±0.26bc 75.28±0.71cde 75.91±1.86 11.49±0.14 13.15±0.24 12.82±1.41d HJ2 3.51±0.33bc 75.28±0.40cde 76.37±1.10 10.42±1.01 13.24±0.14 15.74±0.37bc HJ3 3.81±0.28ab 75.04±0.83de 76.03±1.63 11.78±1.40 12.98±0.28 15.27±0.82c HJ4 3.90±0.16a 75.56±0.37bcde 76.39±0.76 10.97±0.09 13.13±0.26 17.11±0.48b HJ5 3.61±0.20ab 74.60±0.38e 76.33±0.48 11.13±0.49 12.92±0.02 19.48±0.33a 单个因子的平均值 Means of single factor J0 3.30D 75.70 75.57 12.46 13.271 7.32E J1 3.54C 76.46 75.91 11.49 13.153 10.79D J2 3.67ABC 76.05 76.37 10.42 13.244 13.31C J3 3.81AB 75.24 76.30 11.78 12.981 14.19BC J4 3.90A 75.74 76.39 10.97 13.131 15.33B J5 3.62BC 75.37 76.33 11.13 12.925 17.93A L 3.66 76.44y 76.10 11.37 13.12 11.19x H 3.62 75.09x 76.19 11.37 13.11 15.10y 双因素分析P值 P-value of Two-way ANOVA 盐度因素 Salinity factor 0.564 0.000 0.814 0.992 0.964 0.000 肌醇因素 Inositol factor 0.001 0.111 0.740 0.089 0.372 0.000 交互作用 Interaction 0.197 0.189 0.997 1.000 1.000 0.058 表 4 肌醇对凡纳滨对虾幼虾血清生化指标影响
Table 4. Effects of inositol on serum biochemical indexes for juvenile L. vannamei
组别
Group总蛋白质量浓度
TP/(g∙L−1)甘油三酯浓度
TG/(mmol∙L−1)总胆固醇浓度
TC/(mmol∙L−1)葡萄糖浓度
Glu/(mmol∙L−1)每个处理的平均值 Individual treatment means LJ0 61.80±8.09 0.45±0.04 1.63±0.36bc 0.74±0.09b LJ1 63.63±3.97 0.41±0.04 1.35±0.36bcd 0.89±0.11ab LJ2 65.00±8.75 0.42±0.02 1.38±0.18bcd 0.90±0.12ab LJ3 66.00±7.56 0.39±0.04 1.16±0.31cd 0.97±0.06ab LJ4 67.33±10.58 0.33±0.03 1.13±0.22cd 0.97±0.24ab LJ5 70.00±6.32 0.33±0.05 0.91±0.18d 1.36±0.94a HJ0 59.76±4.70 0.60±0.51 2.53±0.34a 0.85±0.07ab HJ1 59.66±8.63 0.46±0.06 1.90±0.45b 0.98±0.09ab HJ2 62.86±2.61 0.42±0.04 1.94±0.53b 1.04±0.14ab HJ3 69.80±6.10 0.42±0.05 1.81±0.40b 1.17±0.14ab HJ4 61.03±1.76 0.33±0.18 1.74±0.22bc 1.35±0.10a HJ5 64.30±8.65 0.34±0.02 1.40±0.29bcd 1.38±0.18a 单个因子的平均值 Means of single factor J0 62.38 0.52 2.08A 0.79 J1 63.52 0.43 1.63B 0.94 J2 63.25 0.42 1.66B 1.13 J3 68.57 0.41 1.49BC 1.17 J4 64.83 0.33 1.43BC 1.00 J5 63.05 0.33 1.15C 1.27 L 65.62 0.39 1.26x 0.97 H 62.90 0.43 1.89y 1.13 双因素分析P值 P-value of Two-way ANOVA 盐度因素 Salinity factor 0.254 0.476 0.000 0.140 肌醇因素 Inositol factor 0.682 0.358 0.003 0.125 交互作用 Interaction 0.573 0.960 0.928 0.491 表 5 肌醇对凡纳滨对虾幼虾部分非特异性免疫酶活的影响
Table 5. Effects of inositol on some non-specific immunoenzyme activities for juvenile L. vannamei
组别
Group酸性磷酸酶
ACP/(U∙100 mL−1)碱性磷酸酶
AKP/(U∙100 mL−1)总超氧化物歧化酶
T-SOD/(U∙mL−1)一氧化氮合成酶
NOS/(U∙100 mL−1)每个处理的平均值 Individual treatment means LJ0 5.75±0.19cd 1.85±0.04f 280.13±56.22de 22.61±0.66f LJ1 6.02±0.11bcd 1.88±0.04ef 285.73±37.71cde 22.48±1.85f LJ2 6.37±0.42b 2.11±0.05d 248.77±23.40e 24.48±1.14def LJ3 6.24±0.08b 2.03±0.03d 249.16±2.88e 26.62±3.03def LJ4 6.34±0.11b 2.02±0.19de 254.07±4.59e 24.09±0.40ef LJ5 6.05±0.18bc 2.43±0.09bc 263.80±10.85e 26.28±2.34def HJ0 5.58±0.33d 2.34±0.06c 282.26±12.58de 28.69±1.29cd HJ1 6.14±0.09bc 2.69±0.09a 319.24±16.30bcd 30.96±3.42c HJ2 6.83±0.39a 2.39±0.06bc 335.03±13.24ab 35.17±3.41b HJ3 6.86±0.26a 2.53±0.07b 367.56±22.07a 47.56±4.17a HJ4 6.33±0.28b 2.46±0.10bc 326.23±7.31abc 31.56±1.58bc HJ5 6.14±0.27bc 2.47±0.07bc 340.85±10.30ab 27.79±0.55cde 单个因子的平均值 Means of single factor J0 5.66C 2.09C 281.19 25.65C J1 6.08B 2.28B 302.48 26.72C J2 6.60A 2.25B 291.90 29.82B J3 6.55A 2.28B 308.36 37.09A J4 6.33AB 2.24B 290.15 27.82BC J5 6.09B 2.45A 302.32 27.03BC L 6.12x 2.05x 263.61x 24.42x H 6.31y 2.48y 328.52y 33.62y 双因素分析P值 P-value of Two-way ANOVA 盐度因素 Salinity factor 0.038 0.000 0.000 0.000 肌醇因素 Inositol factor 0.000 0.000 0.379 0.000 交互作用 Interaction 0.103 0.000 0.004 0.000 -
[1] 李雪鹤, 郭冉, 贾高旺, 等. 2种盐度和3种糖源对凡纳滨对虾生长和糖代谢的影响[J]. 动物营养学报, 2019, 31(9): 4387-4395. [2] MARTINEZ-ANTONIO E M, RACOTTA L S, RUVALCABAMARQUEZ J C, et al. Modulation of stress response and productive performance of Litopenaeus vannamei through diet[J]. Peer J, 2019, 7. DOI: https://doi.org/10.7717/peerj.6850. [3] PAN L Q, ZHANG L J, LIU H Y. Effects of salinity and pH on ion-transport enzyme activities, survival and growth of Litopenaeus vannamei postlarvae[J]. Aquaculture, 2007, 273(4): 711-720. doi: 10.1016/j.aquaculture.2007.07.218 [4] LI E, CHEN L, ZENG C, et al. Growth, body composition, respiration and ambient ammonia nitrogen tolerance of the juvenile white shrimp, Litopenaeus vannamei, at different salinities[J]. Aquaculture, 2007, 265(1/2/3/4): 385-390. [5] MARTIN P V, MAYRAL G F, FERNANDO J B, et al. Investigation of the effects of salinity and dietary protein level on growth and survival of Pacific white shrimp, Litopenaeus vannamei[J]. J World Aquac Soc, 2007, 38(4): 475-485. doi: 10.1111/j.1749-7345.2007.00121.x [6] PONCE-PALAFOX J, MARTINEZ-PALACIOS C A, ROSS L G. The effects of salinity and temperature on the growth and survival rates of juvenile white shrimp, Penaeus vannamei, Boone, 1931[J]. Aquaculture, 1997, 157(1/2): 107-115. [7] 李二超. 盐度对凡纳滨对虾的生理影响及其营养调节[D]. 上海: 华东师范大学, 2008: 1-123. [8] LI E, XIONG Z, CHEN L, et al. Acute toxicity of boron to juvenile white shrimp, Litopenaeus vannamei, at two salinities[J]. Aquaculture, 2008, 278(1/2/3/4): 175-178. [9] ESPARZARZA-LEAL H M, PONCE-PALAFOX J T, CERVANTES-CERVANTES C M, et al. Effects of low salinity exposure on immunological, physiological and growth performance in Litopenaeus vannamei[J]. Aquacult Res, 2019, 50(3): 944-950. doi: 10.1111/are.13969 [10] 郑佩华, 钱坤, 张秀霞, 等. 不同养殖盐度对凡纳滨对虾血细胞的影响[J]. 饲料工业, 2017, 38(20): 14-19. [11] VALENCIA-CASTANEDA G, FRIAS-ESPERICUETA M G, VANEGAS-PEREZ R C, et al. Acute toxicity of ammonia, nitrite and nitrate to shrimp Litopenaeus vannamei postlarvae in low-salinity water[J]. Bull Environ Contam Toxicol, 2018, 101(2): 229-234. [12] 朱宏友, 王广军, 余德光, 等. 盐度变化对凡纳滨对虾一氧化氮合酶水平及病原敏感性的影响[J]. 湛江海洋大学学报, 2005, 25(6): 90-93. [13] SUN X Y, LIU Q H, HUANG J. iTRAQ-based quantitative proteomic analysis of differentially expressed proteins in Litopenaeus vannamei in response to infection with WSSV strains varying in virulence[J]. Lett Appl Microbiol, 2018, 67(2): 113-122. doi: 10.1111/lam.13004 [14] HUANG M, DONG Y, ZHANG Y, et al. Growth and lipidomic responses of juvenile pacific white shrimp Litopenaeus vannamei to low salinity[J]. Front Physiol, 2019, 10: 1087. doi: 10.3389/fphys.2019.01087 [15] 鲁耀鹏, 钱坤, 汪蕾, 等. 养殖盐度对凡纳滨对虾抗氧化酶及免疫相关酶活力的影响[J]. 河北渔业, 2019(12): 1-5,28. doi: 10.3969/j.issn.1004-6755.2019.12.001 [16] 李晓, 王晓璐, 王颖, 等. 盐度对养殖凡纳滨对虾肌肉营养成分的影响[J]. 中国农业科技导报, 2020, 22(1): 130-137. [17] CHEN K, LI E C, XU C, et al. Evaluation of different lipid sources in diet of pacific white shrimp Litopenaeus vannamei at low salinity[J]. Aquac Rep, 2015, 2(C): 163-168. [18] OSTLUND R E, MCGILL J B, HERSKOWITZ I, et al. D-chiro-inositol metabolism in diabetes mellitus[J]. P Natl A Sci, 1993, 90(21): 9988-9992. doi: 10.1073/pnas.90.21.9988 [19] CHATREE S, THONGMAEN N, TANTIVEJKUL K, et al. Role of inositols and inositol phosphates in energy metabolism[J]. Molecules, 2020, 25(21): 1-28. [20] LAPEZ-GAMBERO A J, SANJUAN C, SERRANOCASTRO P J. The biomedical uses of inositols: a nutraceutical approach to metabolic dysfunction in aging and neurodegenerative diseases[J]. Biomedicines, 2020, 8(9): 295. doi: 10.3390/biomedicines8090295 [21] PAK Y, HONG Y, KIM S, et al. In vivo chiro-inositol metabolism in the rat: a defect in chiro-inositol synthesis from myo-inositol and an increased incorporation of chiro-[3H]inositol into phospholipid in the Goto-Kakizaki (G.K) rat[J]. Mol Cells, 1998, 8(3): 301-309. [22] 周佺, 张亚男, 白亦光, 等. 3-磷酸肌醇依赖性蛋白激酶1调控破骨细胞对骨质疏松小鼠骨密度的影响[J]. 中国组织工程研究, 2021, 25(29): 4680-4684. doi: 10.12307/2021.168 [23] 张晓亮, 汪雷, 柏新乐. 肌醇依赖酶1α调控下胰岛β细胞凋亡和衰老的关系[J]. 临床内科杂志, 2021, 38(5): 343-346. doi: 10.3969/j.issn.1001-9057.2021.05.017 [24] 宋瑞鹏, 蔡一鸣, 范道洋, 等. 磷酸肌醇3激酶-蛋白激酶B-哺乳动物雷帕霉素靶蛋白信号通路介导的p53基因对骨肉瘤血管生成的抑制作用[J]. 中华实验外科杂志, 2021, 38(5): 886-889. doi: 10.3760/cma.j.cn421213-20200926-01343 [25] CAPUTO M, BONA E, LEONE I, et al. Inositols and metabolic disorders: from farm to bedside[J]. J Tradit Complement Med, 2020, 10(3): 252-259. doi: 10.1016/j.jtcme.2020.03.005 [26] SHIAU S Y, SU S L. Dietary inositol requirement for juvenile grass shrimp, Penaeus monodon[J]. Aquaculture, 2004, 241(1/2/3/4): 1-8. [27] JIANG W D, FENG L, LIU Y, et al. Lipid peroxidation, protein oxidant and antioxidant status of muscle, intestine and hepatopancreas for juvenile Jian carp (Cyprinus carpio var. Jian) fed graded levels of myo-inositol[J]. Food Chem, 2010, 120(3): 692-697. doi: 10.1016/j.foodchem.2009.10.062 [28] 刘铁斌, 李爱杰, 张嘉萌. 中国对虾 (Penaeus chinensis) 维生素营养的研究-X: ——中国对虾对肌醇、氯化胆碱营养需要的研究[J]. 青岛海洋大学学报, 1993, 23(4): 67-74. [29] 黄晓玲. 凡纳滨对虾幼虾对硫胺素、泛酸、维生素B6和肌醇需要量的研究[D]. 宁波: 宁波大学, 2014: 1-57. [30] CHEN S J, GUO Y C, ESPE M, et al. Growth performance, haematological parameters, antioxidant status and salinity stress tolerance of juvenile Pacific white shrimp (Litopenaeus vannamei) fed different levels of dietary myo-inositol[J]. Aquac Nutr, 2018, 24(5): 1527-1539. doi: 10.1111/anu.12690 [31] 姜维丹. 肌醇对幼建鲤消化吸收能力和免疫能力的影响[D]. 雅安: 四川农业大学, 2008: 1-75. [32] CONDON K J, SABATINI D M. Nutrient regulation of mTORC1 at a glance[J]. J Cell Sci, 2019, 132(21): 1-6. [33] LIU G Y, SABATINI D M. mTOR at the nexus of nutrition, growth, ageing and disease[J]. Nat Rev Mol Cell Biol, 2020, 21(4): 183-203. [34] 辛芳. 凡纳滨对虾mTOR信号通路中重要基因的克隆和功能的初步研究[D]. 青岛: 中国科学院大学(海洋研究所), 2016: 1-17. [35] 杨金芳. 添加钾离子对低盐度水体养殖凡纳滨对虾 (Litopenaeus vannamei) 的生长与生理特性的影响[D]. 湛江: 广东海洋大学, 2011: 1-71. [36] 陈科. 低盐度下凡纳滨对虾脂肪营养生理研究[D]. 上海: 华东师范大学, 2017: 1-179 [37] 王晓丹. 凡纳滨对虾适应低盐度胁迫的糖营养和糖代谢研究[D]. 上海: 华东师范大学, 2017: 1-127. [38] 李日美, 申光荣, 黄放, 等. 小肽对凡纳滨对虾幼虾生长、体成分、非特异性免疫力及抗病力的影响[J]. 动物营养学报, 2018, 30(8): 3082-3090. doi: 10.3969/j.issn.1006-267x.2018.08.025 [39] 尹飞, 孙鹏, 彭士明, 等. 低盐度胁迫对银鲳幼鱼肝脏抗氧化酶、鳃和肾脏ATP酶活力的影响[J]. 应用生态学报, 2011, 22(4): 1059-1066. [40] 刘存岐, 王安利, 王维娜, 等. 海水中几种金属离子对中国对虾幼体体内碱性磷酸酶和ATPase的影响[J]. 水产学报, 2001, 25(4): 298-303. [41] 李玉全, 李永生, 赵法箴. 盐度渐变与骤变对脊尾白虾渗透、代谢及免疫相关酶活力的影响[J]. 生态学报, 2015, 35(21): 7229-7235. [42] 季延滨, 于雯雯, 孙金辉, 等. 盐度骤降对南美白对虾仔虾抗氧化机能的影响[J]. 天津农学院学报, 2008, 15(4): 19-23. doi: 10.3969/j.issn.1008-5394.2008.04.006 [43] WANG N, WANG T T, ZHAO X X, et al. Molecular characterization of the nitric oxide synthase gene and its immunomodulation of nitric oxide production in the triangle shell mussel (Hyriopsis cumingii)[J]. Dev Comp Immunol, 2021. DOI: https://doi.org/10.1016/j.dci.2021.104136.. [44] CHEN S, XIE S, MING C, et al. Hypoxia-induced changes in survival, immune response and antioxidant status of the Pacific white shrimp (Litopenaeus vannamei) fed with graded levels of dietary myo-inositol[J]. Aquac Nutr, 2019, 25(2): 518-528. doi: 10.1111/anu.12877 [45] CHEN S, YU Y, GAO Y, et al. Exposure to acute ammonia stress influences survival, immune response and antioxidant status of Pacific white shrimp (Litopenaeus vannamei) pretreated with diverse levels of inositol[J]. Fish Shellfish Immun, 2019, 89: 248-256. doi: 10.1016/j.fsi.2019.03.072 [46] BU X, LIN Z, LIU S, et al. Effects of myo-inositol on growth performance, body composition, antioxidant status, non-specific immunity and lipid metabolism of juvenile Chinese mitten crab (Eriocheir sinensis)[J]. Aquac Nutr, 2020, 26(5): 1623-1635. doi: 10.1111/anu.13107 [47] GARCIA V, SESSA W C. Endothelial NOS: perspective and recent developments[J]. Br J Pharmacol, 2019, 176(2): 1-16. -