留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

滤食性贝类养殖对浮游生物的影响研究进展

齐占会 史荣君 于宗赫 徐淑敏 韩婷婷 徐姗楠 黄洪辉

齐占会, 史荣君, 于宗赫, 徐淑敏, 韩婷婷, 徐姗楠, 黄洪辉. 滤食性贝类养殖对浮游生物的影响研究进展[J]. 南方水产科学, 2021, 17(3): 115-121. doi: 10.12131/20200183
引用本文: 齐占会, 史荣君, 于宗赫, 徐淑敏, 韩婷婷, 徐姗楠, 黄洪辉. 滤食性贝类养殖对浮游生物的影响研究进展[J]. 南方水产科学, 2021, 17(3): 115-121. doi: 10.12131/20200183
Zhanhui QI, Rongjun SHI, Zonghe YU, Shumin XU, Tingting HAN, Shannan XU, Honghui HUANG. Review of influences of filter-feeding bivalves aquaculture on planktonic community[J]. South China Fisheries Science, 2021, 17(3): 115-121. doi: 10.12131/20200183
Citation: Zhanhui QI, Rongjun SHI, Zonghe YU, Shumin XU, Tingting HAN, Shannan XU, Honghui HUANG. Review of influences of filter-feeding bivalves aquaculture on planktonic community[J]. South China Fisheries Science, 2021, 17(3): 115-121. doi: 10.12131/20200183

滤食性贝类养殖对浮游生物的影响研究进展

doi: 10.12131/20200183
基金项目: 国家自然科学基金项目 (41976149, 31900094);广东省自然科学基金项目 (2021A1515011377);中国水产科学研究院南海水产研究所中央级公益性科研院所基本科研业务费专项资金资助(2020YJ02, 2021SD03);中国水产科学研究院基本科研业务费专项资金(2020TD15)
详细信息
    作者简介:

    齐占会 (1980—),男,博士,研究员,从事浅海生态学研究。E-mail: qizhanhui@scsfri.ac.cn

    通讯作者:

    黄洪辉 (1972—),男,博士,研究员,从事海洋环境学研究。E-mail: Huanghh@scsfri.ac.cn

  • 中图分类号: P 76

Review of influences of filter-feeding bivalves aquaculture on planktonic community

  • 摘要: 滤食性贝类是世界上产量最大的养殖种类,规模化养殖极大地增加了近岸水域中贝类的数量。贝类生理过程和养殖活动对海洋生态系统的影响是海洋生态学的重要研究领域。文章梳理了目前关于贝类对浮游生物影响的研究进展,总结了规模化贝类养殖对养殖区及毗连水域的浮游生物数量和群落结构的主要影响机制:贝类的滤食对浮游生物产生强烈的下行控制作用而降低浮游生物的数量;选择性捕食改变了浮游生物群落结构;贝类的排泄增加了水体中的营养元素,促进了浮游植物的生长;贝类的生物沉积则导致硅 (Si) 元素的沉积和埋藏,改变了生源要素的比例,对硅藻等浮游植物产生了限制;贝类养殖设施的阻流作用使浮游生物在养殖区的滞留时间延长,增加了浮游生物被捕食的概率;贝类养殖显著增加了海鞘等滤食性附着生物的数量,从而也对浮游生物产生了影响。此外,还提出了有待继续深入研究的科学问题。
  • [1] FAO. The state of world fisheries and aquaculture[M]. Rome: Food and Aquaculture Organization of the United Nations, 2020: 29-31.
    [2] 农业农村部渔业渔政管理局. 2019中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2019: 22-23.
    [3] DAME R F. Ecology of marine bivalves. An ecosystem approach[M]. Leesburg: Taylor & Francis/CRC Press, 2011: 146-148.
    [4] WONG W H, TWINING B S. Assimilation of micro- and mesozooplankton by zebra mussels: a demonstration of the food web link between zooplankton and benthic suspension feeders[J]. Limnol Oceanogr, 2003, 48(1): 308-312. doi: 10.4319/lo.2003.48.1.0308
    [5] 周毅, 杨红生. 四十里湾几种双壳贝类及污损动物的氮、磷排泄及其生态效应[J]. 海洋与湖沼, 2002, 33(4): 424-431. doi: 10.3321/j.issn:0029-814X.2002.04.012
    [6] FIELD C B, BEHRENFELD M J, RANDERSON J T, et al. Primary production of the biosphere: integrating terrestrial and oceanic components[J]. Science, 1998, 281(5374): 237-240. doi: 10.1126/science.281.5374.237
    [7] 陈露, 李纯厚, 魏小岚, 等. 南沙群岛海域夏季氮磷添加模拟实验中浮游植物群落的变化[J]. 南方水产科学, 2015, 11(5): 56-66. doi: 10.3969/j.issn.2095-0780.2015.05.007
    [8] 汪秀芳, 陈圣宾, 宋爱琴, 等. 植物在硅生物地球化学循环过程中的作用[J]. 生态学杂志, 2007, 26(4): 595-600. doi: 10.3321/j.issn:1000-4890.2007.04.026
    [9] HULOT V, SAULNIER D, LAFABRIE C, et al. Shellfish culture: a complex driver of planktonic communities[J]. Rev Aquacult, 2020, 12(1): 33-46. doi: 10.1111/raq.12303
    [10] SMAAL A, van STRALEN M, SCHUILING E. The interaction between shellfish culture and ecosystem processes[J]. Can J Fish Aquat Sci, 2001, 58: 991-1002. doi: 10.1139/f01-026
    [11] QIANG X U, YANG H. Food sources of three bivalves living in two habitats of Jiaozhou Bay (Qingdao, China): indicated by lipid biomarkers and stable isotope analysis[J]. J Shellfish Res, 2015, 26(2): 561-567.
    [12] 沈亚男, 张博, 姜松, 等. 基于脂肪酸标志法的不同海区合浦珠母贝的摄食差异研究[J]. 南方水产科学, 2015, 11(6): 27-33. doi: 10.3969/j.issn.2095-0780.2015.06.004
    [13] WONG W H, LEVINTON J S. The trophic linkage between zooplankton and benthic suspension feeders: direct evidence from analyses of bivalve faecal pellets[J]. Mar Biol, 2006, 148(4): 799-805. doi: 10.1007/s00227-005-0096-0
    [14] LEHANE C, DAVENPORT J. Ingestion of bivalve larvae by Mytilus edulis: experimental and field demonstrations of larviphagy in farmed blue mussels[J]. Mar Biol, 2004, 145(1): 101-107.
    [15] PRATO E, DANIELI A, MAFFIA M, et al. Lipid and fatty acid compositions of Mytilus galloprovincialis cultured in the Mar Grande of Taranto (Southern Italy): feeding strategies and trophic relationships[J]. Zool Stud, 2010, 49(2): 211-219.
    [16] MANAHAN D T, WRIGHT S H, STEPHENS G C. Simultaneous determination of net uptake of 16 amino acids by a marine bivalve[J]. Am J Physiol, 1983, 244(6): 832-838.
    [17] 张继红, 方建光. 栉孔扇贝对春季桑沟湾颗粒有机物的摄食压力[J]. 水产学报, 2006, 365(2): 103-115.
    [18] PRINS T C, SMAAL A C, DAME R F. A review of the feedbacks between bivalve grazing and ecosystem processes[J]. Aquat Ecol, 1997, 31(4): 349-359. doi: 10.1023/A:1009924624259
    [19] PETERSEN J K, NIELSEN T G, van DUREN L, et al. Depletion of plankton in a raft culture of Mytilus galloprovincialis in Rıa de Vigo, NW Spain: I. Phytoplankton[J]. Aquat Biol, 2008, 4(2): 113-125.
    [20] LIN J, LI C, ZHANG S. Hydrodynamic effect of a large offshore mussel suspended aquaculture farm[J]. Aquaculture, 2016, 451: 147-155. doi: 10.1016/j.aquaculture.2015.08.039
    [21] OGILVIE S C, ROSS A H, SCHIEL D R. Phytoplankton biomass associated with mussel farms in Beatrix Bay, New Zealand[J]. Aquaculture, 2000, 181(1): 71-80.
    [22] STROHMEIER T, DUINKER A, STRAND Ø, et al. Temporal and spatial variation in food availability and meat ratio in a longline mussel farm (Mytilus edulis)[J]. Aquaculture, 2008, 276(12/3/4): 83-90.
    [23] YUKIHIRA H, LUCAS J, KLUMPP D. Comparative effects of temperature on suspension feeding and energy budgets of the pearl oysters Pinctada margaritifera and P. maxima[J]. Mar Ecol Prog Ser, 2000, 195: 179-188. doi: 10.3354/meps195179
    [24] WANG Y, HU M, WONG W H, et al. The combined effects of oxygen availability and salinity on physiological responses and scope for growth in the green-lipped mussel Perna viridis[J]. Mar Pollut Bull, 2011, 63(5-12): 255-261. doi: 10.1016/j.marpolbul.2011.02.004
    [25] NORKKO J, PILDITCH C A, THRUSH S F, et al. Effects of food availability and hypoxia on bivalves: the value of using multiple parameters to measure bivalve condition in environmental studies[J]. Mar Ecol Prog Ser, 2005, 298(1): 205-218.
    [26] RICHARD M, ARCHAMBAULT P, THOUZEAU G, et al. Influence of suspended mussel lines on the biogeochemical fluxes in adjacent water in the Îles-de-la-Madeleine (Quebec, Canada)[J]. Can J Fish Aquat Sci, 2016, 63(6): 1198-1213.
    [27] FILGUEIRA R, BYRON C, COMEAU L, et al. An integrated ecosystem approach for assessing the potential role of cultivated bivalve shells as part of the carbon trading system[J]. Mar Ecol Prog Ser, 2015, 518: 281-287. doi: 10.3354/meps11048
    [28] FOURNIER J, DUPUY C, BOUVY M, et al. Pearl oysters Pinctada margaritifera grazing on natural plankton in Ahe atoll lagoon (Tuamotu Archipelago, French Polynesia)[J]. Mar Pollut Bull, 2012, 65(10-12): 490-499. doi: 10.1016/j.marpolbul.2012.03.026
    [29] ROSA M, WARD J E, OUVRARD M, et al. Examining the physiological plasticity of particle capture by the blue mussel, Mytilus edulis (L.): confounding factors and potential artifacts with studies utilizing natural seston[J]. J Exp Mar Biol Ecol, 2015, 473: 207-217. doi: 10.1016/j.jembe.2015.09.005
    [30] STROHMEIER T, STRAND Ø, ALUNNO-BRUSCIA M, et al. Variability in particle retention efficiency by the mussel Mytilus edulis[J]. J Exp Mar Biol Ecol, 2012, 412(3): 96-102.
    [31] LI W K, RAO D V, HARRISON W G, et al. Autotrophic picoplankton in the tropical ocean[J]. Science, 1983, 219(4582): 292-295. doi: 10.1126/science.219.4582.292
    [32] GLOVER H E, CAMPBELL L, PRÉZELIN B B. Contribution of Synechococcus spp. to size-fractioned primary productivity in three water masses in the Northwest Atlantic Ocean[J]. Mar Biol, 1986, 91(2): 193-203. doi: 10.1007/BF00569435
    [33] FRAU D, MOLINA F R, MAYORA G. Feeding selectivity of the invasive mussel Limnoperna fortunei (Dunker, 1857) on a natural phytoplankton assemblage: what really matters?[J]. Limnology, 2016, 17(1): 47-57. doi: 10.1007/s10201-015-0459-2
    [34] JIANG T, CHEN F, YU Z, et al. Size-dependent depletion and community disturbance of phytoplankton under intensive oyster mariculture based on HPLC pigment analysis in Daya Bay, South China Sea[J]. Environ Pollut, 2016, 219: 804-814. doi: 10.1016/j.envpol.2016.07.058
    [35] JACOBS P, RIEGMAN R, MEER J V D. Impact of introduced juvenile mussel cultures on the pelagic ecosystem of the western Wadden Sea, the Netherlands[J]. Aquacult Env Interac, 2016, 8: 553-566. doi: 10.3354/aei00196
    [36] LUCAS L V, CLOERN J E, THOMPSON J K, et al. Bivalve grazing can shape phytoplankton communities[J]. Front Mar Sci, 2016, 3: 3-14.
    [37] VAQUER A, TROUSSELLIER M, COURTIES C, et al. Standing stock and dynamics of picophytoplankton in the Thau Lagoon (Northwest Mediterranean Coast)[J]. Limnol Oceanogr, 1996, 41(8): 1821-1828. doi: 10.4319/lo.1996.41.8.1821
    [38] TOMARU Y, UDAKA N, KAWABATA Z, et al. Seasonal change of seston size distribution and phytoplankton composition in bivalve pearl oyster Pinctada fucata martensii culture farm[J]. Hydrobiologia, 2002, 481(1): 181-185.
    [39] ROSA M, WARD J E, HOLOHAN B A, et al. Physicochemical surface properties of microalgae and their combined effects on particle selection by suspension-feeding bivalve molluscs[J]. J Exp Mar Biol Ecol, 2017, 486: 59-68. doi: 10.1016/j.jembe.2016.09.007
    [40] KACH D J, WARD J E. The role of marine aggregates in the ingestion of picoplankton-size particles by suspension-feeding molluscs[J]. Mar Biol, 2008, 153(5): 797-805. doi: 10.1007/s00227-007-0852-4
    [41] BENINGER P G, DECOTTIGNIES P. What makes diatoms attractive for suspensivores? The organic casing and associated organic molecules of Coscinodiscus perforatus are quality cues for the bivalve Pecten maximus[J]. J Plankton Res, 2005, 27(1): 11-17.
    [42] ESPINOSA E P, HASSAN D, WARD J E, et al. Role of epicellular molecules in the selection of particles by the blue mussel, Mytilus edulis[J]. Biol Bull, 2010, 219(1): 50-60. doi: 10.1086/BBLv219n1p50
    [43] ESPINOSA E P, CERRATO R M, WIKFORS G H, et al. Modeling food choice in the two suspension-feeding bivalves, Crassostrea virginica and Mytilus edulis[J]. Mar Biol, 2016, 163(2): 40. doi: 10.1007/s00227-016-2815-0
    [44] ESPINOSA E P, ALLAM B. Reverse genetics demonstrate the role of mucosal C-type lectins in food particle selection in the oyster Crassostrea virginica[J]. J Exp Biol, 2018, 221: jeb. 174094. doi: 10.1242/jeb.174094
    [45] ESPINOSA E P, ALLAM B. Food quality and season affect gene expression of the mucosal lectin MeML and particle sorting in the blue mussel Mytilus edulis[J]. Mar Biol, 2013, 160(6): 1441-1450. doi: 10.1007/s00227-013-2196-6
    [46] 齐占会, 王珺, 黄洪辉, 等. 广东省海水养殖贝藻类碳汇潜力评估[J]. 南方水产科学, 2012, 8(1): 30-35. doi: 10.3969/j.issn.2095-0780.2012.01.005
    [47] 张继红, 方建光, 唐启升. 中国浅海贝藻养殖对海洋碳循环的贡献[J]. 地球科学进展, 2005, 20(3): 359-365. doi: 10.3321/j.issn:1001-8166.2005.03.014
    [48] BRICKER S B, FERREIRA J G, ZHU C, et al. Role of shellfish aquaculture in the reduction of eutrophication in an urban estuary[J]. Environ Sci Technol, 2018, 52(1): 173-178. doi: 10.1021/acs.est.7b03970
    [49] 沈伟良, 尤仲杰, 施祥元. 不同规格及不同盐度下毛蚶稚贝耗氧率和排氨率的研究[J]. 海洋水产研究, 2008, 29(2): 53-56.
    [50] SOUCHU P, VAQUER A, COLLOS Y, et al. Influence of shellfish farming activities on the biogeochemical composition of the water column in Thau Lagoon[J]. Mar Ecol Prog Ser, 2001, 218: 141-152. doi: 10.3354/meps218141
    [51] LACOSTE E, GUEGUEN Y, le MOULLAC G, et al. Influence of farmed pearl oysters and associated biofouling communities on nutrient regeneration in lagoons of French Polynesia[J]. Aquacult Env Interac, 2014, 5: 209-219. doi: 10.3354/aei00107
    [52] GAERTNER-MAZOUNI N, LACOSTE E, BODOY A, et al. Nutrient fluxes between water column and sediments: potential influence of the pearl oyster culture[J]. Mar Pollut Bull, 2012, 65(10/11/12): 500-505. doi: 10.1016/j.marpolbul.2012.02.013
    [53] MAZOUNI N, GAERTNER J C, DESLOUS-PAOLI J M, et al. Nutrient and oxygen exchanges at the water-sediment interface in a shellfish farming lagoon (Thau, France)[J]. J Exp Mar Biol Ecol, 1996, 205(1/2): 91-113.
    [54] KELLOGG L M, CORNWELL J C, OWENS M S, et al. Denitrification and nutrient assimilation on a restored oyster reef[J]. Mar Ecol Prog Ser, 2013, 480(2): 1-19.
    [55] BROEKHOVEN W V, TROOST K, JANSEN H, et al. Nutrient regeneration by mussel Mytilus edulis spat assemblages in a macrotidal system[J]. J Sea Res, 2014, 88(2): 36-46.
    [56] 赵俊梅, 方建光, 包振民, 等. 3种滤食性贝类对塔玛亚历山大藻的摄食研究[J]. 海洋水产研究, 2004, 25(3): 17-22.
    [57] HÉGARET H, WIKFORS G H, SHUMWAY S E. Diverse feeding responses of five species of bivalve mollusc when exposed to three species of harmful algae[J]. J Shellfish Res, 2017, 26(2): 549-559.
    [58] FALKOWSKI P G. Rationalizing elemental ratios in unicellular algae[J]. J Phycol, 2010, 36(1): 3-6.
    [59] PAERL H W, MACKENZIE L A. A comparative study of the diurnal carbon fixation patterns of nannoplankton and net plankton[J]. Limnol Oceanogr, 1977, 22(4): 732-738. doi: 10.4319/lo.1977.22.4.0732
    [60] GEIDER R, ROCHE J L. Redfield revisited: variability of C: N: P in marine microalgae and its biochemical basis[J]. Eur J Phycol, 2002, 37(1): 1-17. doi: 10.1017/S0967026201003456
    [61] NEWELL C R, RICHARDSON J. The effects of ambient and aquaculture structure hydrodynamics on the food supply and demand of mussel rafts[J]. J Shellfish Res, 2014, 32(1): 257-272.
    [62] 史洁, 魏皓. 半封闭高密度筏式养殖海域水动力场的数值模拟[J]. 中国海洋大学学报, 2009, 39(6): 1181-1187.
    [63] STROHMEIER T, AURE J, DUINKER A, et al. Flow reduction, seston depletion, meat content and distribution of diarrhetic shellfish toxins in a long-line blue mussel (Mytilus edulis) farm[J]. J Shellfish Res, 2014, 24(1): 15-23.
    [64] O'DONNCHA F, HARTNETT M, NASH S. Physical and numerical investigation of the hydrodynamic implications of aquaculture farms[J]. Aquacult Eng, 2013, 52(7): 14-26.
    [65] CERCO C F, NOEL M R. Monitoring, modeling, and management impacts of bivalve filter feeders in the oligohaline and tidal fresh regions of the Chesapeake Bay system[J]. Ecol Model, 2010, 221(7): 1054-1064. doi: 10.1016/j.ecolmodel.2009.07.024
    [66] CRANFORD P J, DUARTE P, ROBINSON S M C, et al. Suspended particulate matter depletion and flow modification inside mussel (Mytilus galloprovincialis) culture rafts in the Ría de Betanzos, Spain[J]. J Exp Mar Biol Ecol, 2014, 452(2): 70-81.
    [67] CLARISSE O, ABREU P C, CARSTENSEN J. Retention time generates short-term phytoplankton blooms in a shallow microtidal subtropical estuary[J]. Estuar Coast Shelf Sci, 2015, 162: 35-44. doi: 10.1016/j.ecss.2015.03.004
    [68] WAGGETT R J, BUSKEY E J. Copepod escape behavior in nonturbulent and turbulent hydrodynamic regimes[J]. Mar Ecol Prog Ser, 2007, 334: 193-198. doi: 10.3354/meps334193
    [69] JAKOBSEN H H. Escape of protists in predator-generated feeding currents[J]. Aquat Microb Ecol, 2002, 26(3): 271-281.
    [70] TITELMAN J, KIØRBOE T. Predator avoidance by nauplii[J]. Mar Ecol Prog Ser, 2003, 247(1): 137-149.
    [71] QI Z, HAN T, ZHANG J, et al. First report on in situ biodeposition rates of ascidians (Ciona intestinalis and Styela clava) during summer in Sanggou Bay, northern China[J]. Aquacult Env Interac, 2015, 6(3): 233-239. doi: 10.3354/aei00129
    [72] 齐占会, 方建光, 张继红, 等. 桑沟湾贝藻养殖区附着生物群落季节演替研究[J]. 渔业科学进展, 2010, 31(4): 72-77. doi: 10.3969/j.issn.1000-7075.2010.04.010
    [73] COMEAU L A, FILGUEIRA R, GUYONDET T, et al. The impact of invasive tunicates on the demand for phytoplankton in longline mussel farms[J]. Aquaculture, 2015, 441: 95-105. doi: 10.1016/j.aquaculture.2015.02.018
    [74] LACOSTE E, GAERTNER-MAZOUNI N. Biofouling impact on production and ecosystem functioning: a review for bivalve aquaculture[J]. Rev Aquacult, 2015, 7(3): 187-196. doi: 10.1111/raq.12063
    [75] MAZOUNI N, GAERTNER J C, DESLOUS-PAOLI J M. Influence of oyster culture on water column characteristics in a coastal lagoon (Thau, France)[J]. Hydrobiologia, 1998, 373-374(3): 149-156.
    [76] MAZOUNI N, GAERTNER J C, DESLOUS-PAOLI J M. Composition of biofouling communities on suspended oyster cultures: an in situ study of their interactions with the water column[J]. Mar Ecol Prog Ser, 2001, 214: 93-102. doi: 10.3354/meps214093
    [77] YAHEL G, EERKES-MEDRANO D I, LEYS S P. Size independent selective filtration of ultraplankton by hexactinellid glass sponges[J]. Can J Zool, 2006, 45: 181-194.
  • 加载中
计量
  • 文章访问数:  299
  • HTML全文浏览量:  75
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-05
  • 修回日期:  2021-01-02
  • 录用日期:  2021-01-21
  • 网络出版日期:  2021-04-07
  • 刊出日期:  2021-06-05

目录

    /

    返回文章
    返回