留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同碳氮比对中华草龟养殖水体生物絮团形成、水质及菌群结构的影响

张凯 林怡静 厉晨阳 刘芳玲 沈铭浩 郑善坚

张凯, 林怡静, 厉晨阳, 刘芳玲, 沈铭浩, 郑善坚. 不同碳氮比对中华草龟养殖水体生物絮团形成、水质及菌群结构的影响[J]. 南方水产科学. doi: 10.12131/20200144
引用本文: 张凯, 林怡静, 厉晨阳, 刘芳玲, 沈铭浩, 郑善坚. 不同碳氮比对中华草龟养殖水体生物絮团形成、水质及菌群结构的影响[J]. 南方水产科学. doi: 10.12131/20200144
ZHANG Kai, LIN Yijing, LI Chenyang, LIU Fangling, SHEN Minghao, ZHENG Shanjian. Effects of different C/N ratios on formation of biofloc, water quality and microflora in aquaculture water of Chinemys reevesii[J]. South China Fisheries Science. doi: 10.12131/20200144
Citation: ZHANG Kai, LIN Yijing, LI Chenyang, LIU Fangling, SHEN Minghao, ZHENG Shanjian. Effects of different C/N ratios on formation of biofloc, water quality and microflora in aquaculture water of Chinemys reevesii[J]. South China Fisheries Science. doi: 10.12131/20200144

不同碳氮比对中华草龟养殖水体生物絮团形成、水质及菌群结构的影响

doi: 10.12131/20200144
基金项目: 浙江省重点研发计划项目 (2019C02049; 2020C02014)
详细信息
    作者简介:

    张凯:张  凯  (1998—),男,硕士研究生,研究方向为水生动物生态学。E-mail: 1360349228@qq.com

    通讯作者:

    郑善坚 (1971—),男,副教授,硕士,从事水生动物生态学研究。E-mail: zhengsj@zjnu.cn

  • 中图分类号: S 966.5

Effects of different C/N ratios on formation of biofloc, water quality and microflora in aquaculture water of Chinemys reevesii

  • 摘要: 为探讨生物絮团技术在龟鳖类养殖中应用的可行性,并确定其最佳添加量,该研究通过调控中华草龟 (Chinemys reevesii) 养殖水体中的碳氮比 (C/N) ,分析了生物絮团形成及对水质和菌落的影响。实验以添加蔗糖设计C/N为10∶1、15∶1、20∶1和对照组,进行为期40 d养殖。结果显示,各组生物絮团体积指数 (FVI) 随C/N的增加而增大,在28 d后趋于稳定;C/N≥10时氨氮和亚硝酸盐处理效果显著,其中C/N为15∶1组40 d后氨氮和亚硝酸盐去除率分别为76.7%和64.4%。C/N为15∶1时能促进龟池生物絮团的形成,并可有效降低水中氨氮、亚硝酸盐水平。对实验组 (C/N=15∶1) 与对照组的生物絮团进行高通量测序,发现2种水体中生物絮团的优势菌门均为变形菌门、拟杆菌门、放线菌门,但各优势菌门占比有所差异。研究表明,添加不同C/N可影响中华草龟养殖水体生物絮团的形成、水质和菌群结构。C/N为15∶1是形成生物絮团的最适比例,在促进生物絮团形成的同时,对水质调节能力较强。
  • 图  1  实验期不同处理组的生物絮团沉积量动态变化

    Figure  1.  Dynamic changes of biofloc deposits in different groups during experimental period

    图  2  生物絮团的形态结构观察图

    A. 核状中心;B. 丝状物;C. 藻类;D. 原生动物。

    Figure  2.  Morphology of biofloc under microscope.

    A. Uclear center; B. Filament; C. Algae; D. Protozoa.

    图  3  实验期不同处理组氨氮、亚硝酸盐和总氮的动态变化

    Figure  3.  Dynamic changes of ammonia-N, nitrite-N and total nitrogen concentrations in different groups during experimental period

    图  4  对照组与实验组 (C/N=15∶1) 细菌门水平的分布情况

    Figure  4.  Distribution of bacterial phylum levels in control group and experimental group (C/N=15∶1)

    图  5  对照组与实验组 (C/N=15∶1) 细菌纲水平的分布情况

    Figure  5.  Distribution of bacterial class levels in control group and experimental group (C/N=15∶1)

    图  6  对照组与实验组 (C/N=15∶1) 细菌属水平的分布情况

    Figure  6.  Distribution of bacterial genus levels in control group and experimental group (C/N=15∶1)

    图  7  对照组与实验组 (C/N=15∶1) 部分细菌属水平差异图

    Figure  7.  Difference of bacterial genus level between control group and experimental group (C/N=15∶1)

    表  1  实验结束时不同处理组养殖水体的水质参数

    Table  1.   Water quality of aquaculture water bodies in different groups at the end of the test period

    组别
    Group
    温度
    T/( ℃)
    酸碱度
    pH
    溶解氧
    DO/(mg.L−1)
    氨氮
    TAN/(mg.L−1)
    亚硝酸盐
    Nitrite/(mg.L−1)
    总氮
    TN/(mg.L−1)
    对照Control31.4±0.7a7.32±0.17a1.20±0.22a2.23±0.12a1.35±0.05a27.86±3.74a
    C/N=10∶131.1±0.5a7.26±0.30b0.40±0.09b0.73±0.06b1.18±0.14a26.31±2.31a
    C/N=15∶131.3±0.9a7.21±0.29b0.29±0.08b0.52±0.18b0.48±0.04b18.22±1.53b
    C/N=20∶131.5±1.2a7.01±0.47b0.21±0.12b0.60±0.15b0.42±0.04b19.97±3.36b
    注:同列中不同字母间存在显著性差异 (P< 0.05)。 Note: Note: Values with different letters within the same column indicate significant difference (P<0.05).
    下载: 导出CSV
  • [1] AVNIMELECH Y. Carbon /nitrogen ratio as a control element in aquaculture systems[J]. Aquaculture, 1999, 176(3/4): 227-235.
    [2] KHANJANI M H, SHARIFINIA M. Biofloc technology as a promising tool to improve aquaculture production[J]. Rev Aquacult, 2020, 12(3): 1836-1850.
    [3] EMERENCIANO M G C, MART'INEZ-CO'RDOVA LR, MART'INEZ-PORCHAS M, et al. Biofloc technology (BFT): a tool for water quality management in aquaculture [C]// HLANGANANI T. Water quality. London: IntechOpen, 2017: 91-109.
    [4] KUHN D D, LAWRENCE A L, BOARDMAN G D, PATNAIK S, MARSH L, FLICK G J. Evaluation of two types of bioflocs derived from biological treatment of fish efflu-ent as feed ingredients for Pacific white shrimp, Litopenaeus vannamei[J]. Aquaculture, 2010, 303(1): 28-33.
    [5] BOSSIER P, EKASARI J. Biofloc technology application in aquaculture to support sustainable development goals[J]. Microb Biotechnol, 2017, 10(5): 1012-1016. doi: 10.1111/1751-7915.12836
    [6] 邓应能, 赵培, 孙运忠, 等. 生物絮团在凡纳滨对虾封闭养殖试验中的形成条件及作用效果[J]. 渔业科学进展, 2012, 33(2): 69-75. doi: 10.3969/j.issn.1000-7075.2012.02.011
    [7] PANIGRAHI A, SARANYA C, SUNDARAM M, et al. Carbon: Nitrogen (C: N) ratio level variation influences microbial community of the system and growth as well as immunity of shrimp (Litopenaeus vannamei) in biofloc based culture system[J]. Fish Shellfish Immunol, 2018, 81(3): 29-37.
    [8] RAY A J, LEWIS B L, BROWDY C L, LEFFLER J W. Suspended solids removal to improve shrimp ( Litopenaeus vannamei) production and an evaluation of a plant-based feed in minimal-exchange, superintensive culture systems[J]. Aquaculture, 2009, 299(1): 89-98.
    [9] 卢炳国, 王海英, 谢骏, 等. 不同C/N水平对草鱼池生物絮团的形成及其水质的影响[J]. 水产学报, 2013, 37(8): 1220-1228.
    [10] 饶毅, 徐先栋, 丁立云, 等. 不同饲料投喂量下生物絮团技术对草鱼养殖及水质的影响[J]. 湖南农业科学, 2020, 50(4): 51-54+57.
    [11] ADINEH H, NADERI M, KHADEMI H M, et al. Biofloc technology improves growth, innate immune responses, oxidative status, and resistance to acute stress in common carp (Cyprinus carpio) under high stocking density[J]. Fish Shellfish immunol, 2019, 95(95): 440-448.
    [12] NAJDEGERAMI E H, BAKHSHI F, LAKANI F B. Effects of biofloc on growth performance, digestive enzyme activities and liver histology of common carp (Cyprinus carpio L. ) fingerlings in zero-water exchange system[J]. Fish Physiol Biochem, 2016, 42(2): 457-465. doi: 10.1007/s10695-015-0151-9
    [13] AZIM M E, LITTLE D C. The biofloc technology (BFT) in indoor tanks: water quality, biofloc composition, and growth and welfare of Nile tilapia (Oreochromis niloticus)[J]. Aquaculture, 2008, 283(1): 29-35.
    [14] LIU G, YE Z Y, LIU D Z, et al. Influence of stocking density on growth, digestive enzyme activities, immune responses, antioxidant of Oreochromis niloticus fingerlings in biofloc systems[J]. Fish Shellfish Immunol, 2018, 81(10): 416-422.
    [15] 孙盛明, 朱健, 戈贤平, 等. 零换水条件下养殖水体中碳氮比对生物絮团形成及团头鲂肠道菌群结构的影响[J]. 动物营养学报, 2015, 27(3): 948-955. doi: 10.3969/j.issn.1006-267x.2015.03.036
    [16] 江晓浚, 孙盛明, 戈贤平, 等. 添加不同碳源对零换水养殖系统中团头鲂鱼种生长、肠道生化指标和水质的影响[J]. 水产学报, 2014, 38(8): 1113-1122.
    [17] 赵春光. 我国本土名龟的养殖现状与前景展望[J]. 中国水产, 2018, 61(4): 30-33.
    [18] 王鸣, 马晶晶, 邵庆均. 中华鳖外塘养殖技术[J]. 水利渔业, 2007, 27(1): 24-26. doi: 10.3969/j.issn.1003-1278.2007.01.011
    [19] 赖年悦, 魏泽能, 吴运动, 等. 不同养殖模式龟鳖养殖效果的比较研究[J]. 水产养殖, 2014, 35(6): 6-8. doi: 10.3969/j.issn.1004-2091.2014.06.002
    [20] 段立安, 王雷, 陈世霞, 等. 化学絮凝法处理温室龟鳖养殖废水工艺参数优化[J]. 安全与环境学报, 2017, 17(2): 671-676.
    [21] LI W, DING H Y, ZHANG F Y, et al. Effects of water spinach lpomoea aquatica cultivation on water quality and performance of Chinese soft-shelled turtle Pelodiscus sinensis pond culture[J]. Aquacult Environ Interactions, 2015, 8: 567-574.
    [22] 赵秀侠, 杨坤, 方婷, 等. 3种微藻在龟鳖养殖废水中的生长与脱氮除磷特性[J]. 水资源保护, 2018, 34(1): 83-87+94. doi: 10.3880/j.issn.1004-6933.2018.01.14
    [23] 王芬, 程云生, 侯冠军, 季索菲, 宋光同, 李虎, 张晔, 吴育春, 李正荣, 朱成骏, 李杰, 蒋业林. 藕鳖共作对水环境和藕鳖生长性能的影响[J]. 中国农学通报, 2021, 37(4): 159-164. doi: 10.11924/j.issn.1000-6850.casb20200100033
    [24] 许明宸. 溶藻菌筛选、复合菌剂制备及在养殖尾水中的应用研究[D]. 常州: 常州大学, 2021: 1-91.
    [25] EL-HAWARRY W N, SHOURBELA R M, HARAZ Y G, et al. The influence of carbon source on growth, feed efficiency, and growth-related genes in Nile tilapia (Oreochromis niloticus) reared under biofloc conditions and high stocking density[J]. Aquaculture, 2021, 542: 736919. doi: 10.1016/j.aquaculture.2021.736919
    [26] Hossein A, Mahdi N, Mohammad K H, et al. Biofloc technology improves growth, innate immune responses, oxidative status, and resistance to acute stress in common carp ( Cyprinus carpio ) under high stocking density[J]. Fish Shellfish Immunol, 2019, 95: 440-448. doi: 10.1016/j.fsi.2019.10.057
    [27] 陈鹏飞. 碳源添加在佛罗里达鳖 (Apalone ferox) 养殖中的研究与应用 [D]. 上海: 上海海洋大学, 2015: 1-86.
    [28] AVNIMELECH Y. Biofloc technology. A practical guide book[M]. Louisiana: Published World Aquaculture Society, 2009: 182.
    [29] MUGWANYA M, DAWOOD M A O, KIMERA F, et al. Biofloc systems for sustainable production of economically important aquatic species: a review[J]. Sustainability, 2021, 13(13): 7255.DOI. doi: 10.3390/su13137255
    [30] 许育新, 孙鹂, 喻曼, 等. 同步硝化反硝化脱氮在水产养殖废水处理中的应用[J]. 浙江农业科学, 2015, 56(7): 1119-1121.
    [31] 陈伟, 谭洪新, 罗国芝, 等. 碳氮比对生物絮凝反应器处理水质效果的影响[J]. 上海海洋大学学报, 2018, 27(6): 907-915.
    [32] KUMARI S, HARIKRISHNA V. et al. Growth, biochemical indices and carcass quality of red tilapia reared in zero water discharge based biofloc system in various salinities using inland saline ground water[J]. Aquaculture, 2021, 540: 730-736.
    [33] 邱立疆. 生物絮团群落结构变化与添加对鲫鱼生长、代谢的影响 [D]. 咸阳: 西北农林科技大学, 2013: 1-46.
    [34] 李朝兵. 生物絮团作为鳙饵料的研究与应用 [D]. 上海: 上海海洋大学, 2012: 1-61.
    [35] ELAYARAJA S, MABROK M, et al. Potential influence of jaggery-based biofloc technology at different C: N ratios on water quality, growth performance, innate immunity, immune-related genes expression profiles, and disease resistance against Aeromonas hydrophila in Nile tilapia (Oreochromis niloticus)[J]. Fish Shellfish Immunol, 2020, 107: 118-128. doi: 10.1016/j.fsi.2020.09.023
    [36] 邓吉朋, 黄建华, 江世贵, 等. 生物絮团在斑节对虾养殖系统中的形成条件及作用效果[J]. 南方水产科学, 2014, 10(3): 29-37. doi: 10.3969/j.issn.2095-0780.2014.03.005
    [37] ZHE Y, LIANG L, RUI Z, et al. Effects of bioflocs with different C/N ratios on growth, immunological parameters, antioxidants and culture water quality in Opsariichthys kaopingensis Dybowski[J]. Aquact Res, 2020, 51(2): 805-815. doi: 10.1111/are.14430
    [38] Mirzakhani N, Ebrahimi E, Jalali, S A H et al. Growth performance, intestinal morphology and nonspecific immunity response of Nile tilapia (Oreochromis niloticus) fry cultured in biofloc systems with different carbon sources and input C: N ratios[J]. Aquaculture, 2019, 512: 734235. doi: 10.1016/j.aquaculture.2019.734235
    [39] YORAM A. Bio-filters: the need for an new comprehensive approach[J]. Aquacult Eng, 2006, 34(3): 172-178. doi: 10.1016/j.aquaeng.2005.04.001
    [40] 曹雨. 现代分子生物学技术在环境微生物领域的应用[J]. 建筑与预算, 2020, 43(1): 54-57.
    [41] 杜玲, 刘刚, 陆健, 等. 高通量测序技术的发展及其在生命科学中的应用[J]. 中国畜牧兽医, 2014, 41(12): 109-116.
    [42] REON B J, DUTTA A. Biological processes discovered by high-throughput sequencing[J]. Am J Pathol, 2016, 186(4): 722-732. doi: 10.1016/j.ajpath.2015.10.033
    [43] 秦海鹏, 王博, 廖栩峥, 等. 生物絮团系统在氮转化过程中的微生物多样性变化[J]. 渔业现代化, 2020, 47(3): 22-28. doi: 10.3969/j.issn.1007-9580.2020.03.004
    [44] SAKAMI T, FUJIOKA Y, SHIMODA T J F E. Comparison of microbial community structures in intensive and extensive shrimp culture ponds and a mangrove area in Thailand [J]. 2010, 74(4): 889-898.
    [45] 张哲, 杨章武, 葛辉, 等. 凡纳滨对虾育苗水体中三种生物絮团的菌群多样性及Tax4Fun基因功能预测分析[J]. 水生生物学报, 2019, 43(4): 786-796. doi: 10.7541/2019.093
    [46] MIURA Y, HIRAIWA M N, ITO T, et al. Bacterial community structures in MBRs treating municipal wastewater: relationship between community stability and reactor performance[J]. Water Res, 2007, 41(3): 627-637. doi: 10.1016/j.watres.2006.11.005
    [47] 廖栩峥, 陈金荣, 秦海鹏, 等. 凡纳滨对虾室外生物絮团养殖池水体理化因子和细菌的变化[J]. 水产养殖, 2020, 41(1): 22-27+33. doi: 10.3969/j.issn.1004-2091.2020.01.005
    [48] 夏耘, 郁二蒙, 谢骏, 等. 基于PCR-DGGE技术分析生物絮团的细菌群落结构[J]. 水产学报, 2012, 36(10): 1563-1571.
    [49] 王俊华, 冯贵颖, 唐艳, 等. 放线菌处理皂河水体的应用研究[J]. 西北农业学报, 2007, 16(1): 82-86. doi: 10.3969/j.issn.1004-1389.2007.01.018
    [50] WAGNER M, RATH G, AMANN R, et al. In situ identification of ammonia-oxidizing bacteria[J]. Syst Appl Microbiol, 1995, 18(2): 251-264. doi: 10.1016/S0723-2020(11)80396-6
    [51] DAIMS H, BRÜHL A, AMANN R, et al. The domain-specific probe EUB338 is insufficient for the detection of all bacteria: development and evaluation of a more comprehensive probe set[J]. Syst Appl Microbiol, 1999, 22(3): 434-44. doi: 10.1016/S0723-2020(99)80053-8
    [52] ZHANG H, YUJI S, SATOSHI H, et al. Gemmatimonas aurantiaca gen. nov., sp. nov., a Gram-negative, aerobic, polyphosphate-accumulating micro-organism, the first cultured representative of the new bacterial phylum Gemmatimonadetes phyl. nov.[J]. Int J Syst Evol Microbiol, 2003, 53(4): 1155-1163. doi: 10.1099/ijs.0.02520-0
  • 加载中
计量
  • 文章访问数:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-12
  • 修回日期:  2021-10-03
  • 录用日期:  2021-11-17
  • 网络出版日期:  2021-12-09

目录

    /

    返回文章
    返回