留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于集成学习的南太平洋长鳍金枪鱼渔场预报模型研究

侯娟 周为峰 樊伟 张衡

侯娟, 周为峰, 樊伟, 张衡. 基于集成学习的南太平洋长鳍金枪鱼渔场预报模型研究[J]. 南方水产科学, 2020, 16(5): 42-50. doi: 10.12131/20200022
引用本文: 侯娟, 周为峰, 樊伟, 张衡. 基于集成学习的南太平洋长鳍金枪鱼渔场预报模型研究[J]. 南方水产科学, 2020, 16(5): 42-50. doi: 10.12131/20200022
Juan HOU, Weifeng ZHOU, Wei FAN, Heng ZHANG. Research on fishing grounds forecasting models of albacore tuna based on ensemble learning in South Pacific[J]. South China Fisheries Science, 2020, 16(5): 42-50. doi: 10.12131/20200022
Citation: Juan HOU, Weifeng ZHOU, Wei FAN, Heng ZHANG. Research on fishing grounds forecasting models of albacore tuna based on ensemble learning in South Pacific[J]. South China Fisheries Science, 2020, 16(5): 42-50. doi: 10.12131/20200022

基于集成学习的南太平洋长鳍金枪鱼渔场预报模型研究

doi: 10.12131/20200022
基金项目: 国家重点研发计划项目 (2019YFD0901405);国家自然科学基金项目 (31602206);上海市自然科学基金项目 (16ZR1444700)
详细信息
    作者简介:

    侯娟:侯 娟 (1994—),女,硕士研究生,研究方向为渔场预报和海洋渔业地理信息系统。E-mail: houjj333@163.com

    通讯作者:

    周为峰 (1978—),女,博士,副研究员,从事渔场海洋学研究。E-mail: zhwfzhwf@163.com

  • 中图分类号: S 931.3

Research on fishing grounds forecasting models of albacore tuna based on ensemble learning in South Pacific

  • 摘要:

    文章利用2008—2015年南太平洋长鳍金枪鱼 (Thunnus alalunga) 延绳钓渔业数据,结合11个环境指标 (海表温度、叶绿素a (Chl-a)浓度、海表温度距平、叶绿素距平、海表温度梯度、叶绿素梯度、海平面异常以及渔区格网对应的前后各1个月海表温度和叶绿素值) 和3个时空指标 (月、经度和纬度),并基于6种集成学习模型,以月为时间分辨率、0.5°×0.5°为空间分辨率,开展了南太平洋长鳍金枪鱼渔场模型构建和预报研究。模型通过10折交叉验证和网格搜索思想确定最佳参数,采用的随机森林、Bagging决策树、C5.0决策树、梯度提升决策树、AdaBoost、Stacking集成模型分别取得了75.52%、73.87%、72.99%、71.14%、71.33%、75.84%的分类准确率。经对比,Stacking集成模型准确率最高。利用2015年环境数据进行预报精度检验,预报总体准确率为63.86%~82.14%,平均70.99%;高单位捕捞努力量渔获量 (Catch per unit effort, CPUE) 渔区预报准确率为62.71%~97.85%,平均78.76%。结果表明Stacking集成模型对南太平洋长鳍金枪鱼渔场的预报具有较好的效果及可行性。

  • 图  1  南太平洋长鳍金枪鱼渔场范围示意图

    Figure  1.  Map of fishing grounds of T. alalunga in South Pacific

    图  2  2008—2014年南太平洋长鳍金枪鱼月平均单位捕捞努力量渔获量分布

    Figure  2.  Monthly average CPUE distribution of T. alalunga in South Pacific from 2008 to 2014

    图  3  2008—2014年南太平洋长鳍金枪鱼高、低单位捕捞努力量渔获量渔区与海表温度、叶绿素a、海平面异常数据的关系

    Figure  3.  Relationship between high and low CPUE fishing areas and SST, Chl-a and SLA intervals for T. alalunga in South Pacific from 2008 to 2014

    图  4  2015年1—12月实际高单位捕捞努力量渔获量渔区与预报高单位捕捞努力量渔获量渔区对比图

    Figure  4.  Comparison of practical high CPUE fishing grounds and forecasted high CPUE fishing grounds from January to December in 2015

    图  5  2015年1—12月渔场预报综合准确率

    Figure  5.  Comprehensive accuracy of fishing grounds forecasted from January to December in 2015

    表  1  单位捕捞努力量渔获量与各环境及时空指标的相关分析

    Table  1.   Correlation analysis of CPUE with environmental and spatio-temporal index

    变量
    Variable
    P
    相关系数R
    Correlation coefficient R
    月份 m 0.00 0.10
    经度 Lon 0.00 −0.14
    纬度 Lat 0.00 −0.30
    海表温度 SST 0.00 −0.32
    叶绿素a浓度 Chl- a 0.00 0.14
    前一个月海表温度 SST_bf 0.00 −0.33
    后一个月海表温度 SST_af 0.00 −0.35
    海表温度距平 ΔSST 0.00 −0.23
    海表温度梯度 SSTG 0.00 0.10
    前一个月叶绿素a浓度 Chla_bf 0.00 0.16
    后一个月叶绿素a浓度 Chla_af 0.00 0.14
    叶绿素a浓度距平 ΔChla 0.00 0.14
    叶绿素a浓度梯度 ChlaG 0.04 0.01
    海平面异常数据 SLA 0.02 −0.01
    下载: 导出CSV

    表  2  各个模型训练结果对比

    Table  2.   Comparison of training results of various models

    模型
    Model
    TreebagRFC5.0GBDTAdaBoostStacking
    准确率
    Accuracy/%
    73.8775.5272.9971.1471.3375.84
    下载: 导出CSV

    表  3  GLM模型自变量显著性检验

    Table  3.   Significance test of variables in Generalized linear model

    偏差来源
    Source of deviation
    回归系数估计
    Estimated regression coefficient
    标准误差
    Standard difference
    z
    Pr (>|z|)
    截距 Intercept 2.647 49 0.105 46 25.103 <2×10−16 P<0.001
    随机数森林 RF −4.074 13 0.155 10 −26.268 <2×10−16 P<0.001
    Bagging决策树 Treebag 0.091 37 0.108 10 0.845 0.398
    C5.0决策树 C5.0 −0.544 04 0.105 74 −5.145 2.67×10−7 P<0.001
    K最近邻 KNN −0.622 02 0.084 46 −7.365 1.77×10−13 P<0.001
    AdaBoost −0.248 96 0.298 41 −0.834 0.404
    下载: 导出CSV

    表  4  2015年1—12月高单位捕捞努力量渔获量渔区预报准确率

    Table  4.   Forecast accuracy of high CPUE fishing grounds from January to December in 2015 %

    月份 Month123456789101112
    准确率 Accuracy62.7163.1666.6765.7197.8594.3870.4580.5668.7590.6395.8388.46
    下载: 导出CSV
  • [1] 范永超, 陈新军, 汪金涛. 基于多因子栖息地指数模型的南太平洋长鳍金枪鱼渔场预报[J]. 海洋湖沼通报, 2015(2): 36-44.
    [2] 樊伟, 张晶, 周为峰. 南太平洋长鳍金枪鱼延绳钓渔场与海水表层温度的关系分析[J]. 大连水产学院学报, 2007(5): 366-371.
    [3] 郭刚刚, 张胜茂, 樊伟, 等. 基于表层及温跃层环境变量的南太平洋长鳍金枪鱼栖息地适应性指数模型比较[J]. 海洋学报, 2016, 38(10): 44-51.
    [4] 杨嘉樑, 黄洪亮, 宋利明, 等. 基于分位数回归的库克群岛海域长鳍金枪鱼栖息环境综合指数[J]. 中国水产科学, 2014, 21(4): 832-851.
    [5] 林显鹏, 郭爱, 张洪亮, 等. 所罗门群岛海域长鳍金枪鱼的垂直分布与环境因子的关系[J]. 浙江海洋学院学报(自然科学版), 2011, 30(4): 303-306.
    [6] BRIAND K, MOLONY B, LEHODEY P. A study on the variability of albacore (Thunnus alalunga) longline catch rates in the southwest Pacific Ocean[J]. Fish Oceanogr, 2011, 20(6): 517-529. doi: 10.1111/j.1365-2419.2011.00599.x
    [7] DOMOKOS R K, SEKI M P, POLOVINA J J, et al. Oceanographic investigation of the American Samoa albacore (Thunnus alalunga) habitat and longline fishing grounds[J]. Fish Oceanogr, 2007, 16(6): 555-572. doi: 10.1111/j.1365-2419.2007.00451.x
    [8] LEHODEY P, SENINA I, NICOL S, et al. Modelling the impact of climate change on South Pacific albacore tuna[J]. Deep Sea Res II, 2015, 113: 246-259. doi: 10.1016/j.dsr2.2014.10.028
    [9] 郭刚刚, 张胜茂, 樊伟, 等. 南太平洋长鳍金枪鱼垂直活动水层空间分析[J]. 南方水产科学, 2016, 12(5): 123-130. doi: 10.3969/j.issn.2095-0780.2016.05.016
    [10] 闫敏, 张衡, 樊伟, 等. 南太平洋长鳍金枪鱼渔场CPUE时空分布及其与关键海洋环境因子的关系[J]. 生态学杂志, 2015(11): 3191-3197.
    [11] 储宇航, 戴小杰, 田思泉, 等. 南太平洋延绳钓长鳍金枪鱼生物学组成及其与栖息环境关系[J]. 海洋渔业, 2016, 38(2): 130-139. doi: 10.3969/j.issn.1004-2490.2016.02.003
    [12] 范江涛. 南太平洋长鳍金枪鱼延绳钓渔业渔情预报研究[D]. 上海: 上海海洋大学, 2011: 21-22.
    [13] 毛江美, 陈新军, 余景. 基于神经网络的南太平洋长鳍金枪鱼渔场预报[J]. 海洋学报, 2016, 38(10): 34-43.
    [14] 范江涛, 陈新军, 钱卫国, 等. 南太平洋长鳍金枪鱼渔场预报模型研究[J]. 广东海洋大学学报, 2011, 31(6): 61-67. doi: 10.3969/j.issn.1673-9159.2011.06.010
    [15] 马孟磊, 陈新军, 陈作志, 等. 南太平洋长鳍金枪鱼栖息地指数模型的比较研究[J]. 广东海洋大学学报, 2017, 37(3): 59-66. doi: 10.3969/j.issn.1673-9159.2017.03.009
    [16] 崔雪森, 唐峰华, 张衡, 等. 基于朴素贝叶斯的西北太平洋柔鱼渔场预报模型的建立[J]. 中国海洋大学学报(自然科学版), 2015, 45(2): 37-43.
    [17] 周为峰, 黎安舟, 纪世建, 等. 基于贝叶斯分类器的南海黄鳍金枪鱼渔场预报模型[J]. 海洋湖沼通报, 2018(1): 116-122.
    [18] 牛明香, 李显森, 徐玉成. 基于广义可加模型和案例推理的东南太平洋智利竹筴鱼中心渔场预报[J]. 海洋环境科学, 2012, 31(1): 30-33. doi: 10.3969/j.issn.1007-6336.2012.01.007
    [19] 闫敏, 张衡, 伍玉梅, 等. 基于GAM模型研究时空及环境因子对南太平洋长鳍金枪鱼渔场的影响[J]. 大连海洋大学学报, 2015, 30(6): 681-685.
    [20] 崔雪森, 唐峰华, 周为峰, 等. 基于支持向量机的西北太平洋柔鱼渔场预报模型构建[J]. 南方水产科学, 2016, 12(5): 1-7. doi: 10.3969/j.issn.2095-0780.2016.05.001
    [21] 张月霞, 丘仲锋, 伍玉梅, 等. 基于案例推理的东海区鲐鱼中心渔场预报[J]. 海洋科学, 2009, 33(6): 8-11.
    [22] LUCAS P. Bayesian analysis, pattern analysis, and data mining in health care[J]. Curr Opin Crit Care, 2004, 10(5): 399-403. doi: 10.1097/01.ccx.0000141546.74590.d6
    [23] RONG P, YANG Q, PAN S J. Mining competent case bases for case-based reasoning[J]. Artif Intell, 2007, 171(16/17): 1039-1068. doi: 10.1016/j.artint.2007.04.018
    [24] 苏奋振, 周成虎, 杜云艳, 等. 海洋渔业资源地理信息系统应用的时空问题[J]. 应用生态学报, 2003(9): 1569-1572. doi: 10.3321/j.issn:1001-9332.2003.09.036
    [25] 徐继伟, 杨云. 集成学习方法: 研究综述[J]. 云南大学学报(自然科学版), 2018, 40(6): 1082-1092. doi: 10.7540/j.ynu.20180455
    [26] 陈雪忠, 樊伟, 崔雪森, 等. 基于随机森林的印度洋长鳍金枪鱼渔场预报[J]. 海洋学报(中文版), 2013, 35(1): 158-164.
    [27] 高峰. 基于提升回归树的东、黄海鲐鱼渔场预报模型研究[D]. 上海: 上海海洋大学, 2016: 80-91.
    [28] FENG Y, CHEN X, GAO F, et al. Impacts of changing scale on Getis-Ord Gi hotspots of CPUE: a case study of the neon flying squid (Ommastrephes bartramii) in the northwest Pacific Ocean[J]. Acta Oceanol Sin, 2018, 37(5): 67-76. doi: 10.1007/s13131-018-1212-6
    [29] 胡启伟. 西沙—中沙海域鸢乌贼资源时空分布环境效应遥感研究[D]. 上海: 上海海洋大学, 2018: 31.
    [30] PI Q L, HU J. Analysis of sea surface temperature fronts in the Taiwan Strait and its adjacent area using an advanced edge detection method[J]. Sci China Earth Sci, 2010, 53(7): 1008-1016. doi: 10.1007/s11430-010-3060-x
    [31] 袁浩杰. Adaboost算法的并行化及其在目标分类中的应用[D]. 广州: 华南理工大学, 2015: 8.
    [32] FRIEDMAN J H. Stochastic gradient boosting[J]. Compt Stat Data An, 2003, 38(4): 367-378.
    [33] 李强. 创建决策树算法的比较研究——ID3, C4.5, C5.0算法的比较[J]. 甘肃科学学报, 2006(4): 88-91. doi: 10.3969/j.issn.1004-0366.2006.04.026
    [34] 江承旭. 斐济专属经济区长鳍金枪鱼渔场分析[D]. 上海: 上海海洋大学, 2017: 12-13.
    [35] 刘洪生, 蒋汉凌, 戴小杰. 中西太平洋长鳍金枪鱼渔场与海温的关系[J]. 上海海洋大学学报, 2014, 23(4): 602-607.
    [36] ZAINUDDIN M, SAITOH K, SAITOH S I. Albacore (Thunnus alalunga) fishing ground in relation to oceanographic conditions in the western North Pacific Ocean using remotely sensed satellite data[J]. Fish Oceanogr, 2010, 17(2): 61-73.
    [37] 朱国平, 李凤莹, 陈锦淘, 等. 印度洋中南部长鳍金枪鱼繁殖栖息的适应性[J]. 海洋环境科学, 2012, 31(5): 697-700.
    [38] 宋婷婷, 樊伟, 伍玉梅. 卫星遥感海面高度数据在渔场分析中的应用综述[J]. 海洋通报, 2013, 32(4): 474-480. doi: 10.11840/j.issn.1001-6392.2013.04.017
    [39] 陈新军, 高峰, 官文江, 等. 渔情预报技术及模型研究进展[J]. 水产学报, 2013, 37(8): 1270-1280.
    [40] CUTLER D R, EDWARDS Jr T C, BEARD K H, et al. Random forests for classification in ecology[J]. Ecology, 2007, 88(11): 2783-2792. doi: 10.1890/07-0539.1
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  1713
  • HTML全文浏览量:  825
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-13
  • 修回日期:  2020-05-21
  • 录用日期:  2020-06-11
  • 网络出版日期:  2021-04-08
  • 刊出日期:  2020-10-09

目录

    /

    返回文章
    返回