留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于稳定同位素的草鱼推水养殖系统食物网的研究

张凯 谢骏 余德光 王广军 龚望宝 李志斐 郁二蒙 田晶晶 夏耘

张凯, 谢骏, 余德光, 王广军, 龚望宝, 李志斐, 郁二蒙, 田晶晶, 夏耘. 基于稳定同位素的草鱼推水养殖系统食物网的研究[J]. 南方水产科学, 2020, 16(3): 61-69. doi: 10.12131/20190217
引用本文: 张凯, 谢骏, 余德光, 王广军, 龚望宝, 李志斐, 郁二蒙, 田晶晶, 夏耘. 基于稳定同位素的草鱼推水养殖系统食物网的研究[J]. 南方水产科学, 2020, 16(3): 61-69. doi: 10.12131/20190217
Kai ZHANG, Jun XIE, Deguang YU, Guangjun WANG, Wangbao GONG, Zhifei LI, Ermeng YU, Jingjing TIAN, Yun XIA. Study on food web of grass carp (Ctenopharyngodon idellus) push-water aquaculture ecosystem by stable isotope analysis[J]. South China Fisheries Science, 2020, 16(3): 61-69. doi: 10.12131/20190217
Citation: Kai ZHANG, Jun XIE, Deguang YU, Guangjun WANG, Wangbao GONG, Zhifei LI, Ermeng YU, Jingjing TIAN, Yun XIA. Study on food web of grass carp (Ctenopharyngodon idellus) push-water aquaculture ecosystem by stable isotope analysis[J]. South China Fisheries Science, 2020, 16(3): 61-69. doi: 10.12131/20190217

基于稳定同位素的草鱼推水养殖系统食物网的研究

doi: 10.12131/20190217
基金项目: 国家重点研发计划项目 (2019YFD0900302);广东省促进经济发展专项资金 (SDYY-2018-07;2019B13);现代农业产业技术体系建设专项资金 (CARS-46-17);广东省自然科学基金项目 (2018A030313412);中国水产科学研究院基本科研业务费专项资金 (2019XN-002);广州市科技计划项目 (201707010311)
详细信息
    作者简介:

    张凯:张 凯 (1984—),男,博士,助理研究员,从事水产健康养殖研究。E-mail: zhangkaiec@163.com

    通讯作者:

    余德光 (1972—),男,硕士,研究员,从事水产健康养殖研究。E-mail: gzyudeguang@163.com

  • 中图分类号: S 965

Study on food web of grass carp (Ctenopharyngodon idellus) push-water aquaculture ecosystem by stable isotope analysis

  • 摘要:

    推水养殖系统是集循环养殖、高效集污、生物净化及自动控制等技术为一体的生产方式。但该系统营养物质归趋尚未明晰,造成饵料资源浪费和养殖调控失策。该研究以草鱼 (Ctenopharyngodon idellus) 推水养殖系统为实验组,以普通池塘养殖系统为对照组,利用稳定同位素 [碳(δ13C)、氮(δ15N)]技术研究两种养殖系统生物食物组成和系统食物网结构。结果表明,草鱼推水养殖系统各生物组分δ13C介于 (−25.76±0.23)‰~ (−22.26±0.20)‰,普通池塘系统δ13C介于 (−25.83±0.24)‰~(−22.38±0.15)‰;推水养殖系统各生物组分δ15N介于 (6.73±0.08)‰~(12.34±0.11)‰,普通池塘系统δ15N介于 (6.73±0.08)‰~(12.14±0.11)‰。稳定同位素混合模型分析结果显示,两组系统中草鱼饲料和底泥碎屑是消费者的主要食物来源。其中,草鱼的主要食物来源是草鱼饲料,鳙 (Aristichthys nobilis) 的主要食物来源是草鱼饲料、大型浮游动物,鲫 (Carassius auratus) 的主要食物来源是底泥碎屑,底泥碎屑的主要来源是草鱼饲料。推水养殖系统草鱼饲料对草鱼的食物组成贡献率高于普通池塘系统。因此,采用推水养殖模式,可促进养殖生物对饲料的摄食,提高饲料利用效率。

  • 图  1  草鱼推水养殖系统示意图

    Figure  1.  Schematic diagram of push-water aquaculture ecosystem pond

    图  2  普通池塘系统简化食物网络图

    粗线条表示主要的能流路径,后图同此

    Figure  2.  A simplified diagram of food web of common pond

    Bold arrows represent main energy flow pathways. The same in the following figure.

    图  3  推水系统简化食物网络图

    Figure  3.  A simplified diagram of food web of push-water aquaculture ecosystem

    表  1  两组系统中各生物组分及碎屑的碳、氮稳定同位素值

    Table  1.   δ13C and δ15N of organisms and detritus in two aquaculture systems $\overline {\mathit{\boldsymbol{X}}}{\bf \pm {{SD}}} $; ‰

    生物和碎屑
    Organisms and detritus
    碳稳定同位素 δ13C 氮稳定同位素 δ15N
    普通池塘
    Commom pond
    推水系统
    Push-water system
    普通池塘
    Common pond
    推水系统
    Push-water system
    草鱼 C. idellus −23.06±0.22 −22.81±0.21 10.13±0.12 9.88±0.11
    A. nobilis −23.84±0.33 −24.04±0.21 12.14±0.11 12.34±0.11
    C. auratus −23.74±0.16 −23.81±0.22 12.14±0.13 12.28±0.10
    浮游植物 Phytoplankton −25.83±0.24 −25.76±0.23 8.16±0.12 8.11±0.10
    小型浮游动物 Microzooplankton −24.32±0.21 −24.40±0.16 10.88±0.10 10.92±0.17
    大型浮游动物 Macrozooplankton −23.50±0.20 −23.50±0.14 11.45±0.15 11.31±0.11
    草鱼饲料 Feed −22.74±0.15 −22.74±0.20 6.73±0.08 6.73±0.08
    水体碎屑 Water detritus −24.93±0.13 −25.20±0.21 8.43±0.09 8.93±0.15
    底泥碎屑 Sediment detritus −23.89±0.21 −24.07±0.20 8.02±0.07 8.48±0.11
    底栖生物 Benthos −22.38±0.15 −22.26±0.20 9.39±0.07 9.51±0.14
    下载: 导出CSV

    表  2  两组系统中各消费者生物潜在食物源及其食物贡献比例

    Table  2.   Contributions of potential food sources to each consumer dietary consumption in two aquaculture systems $\overline {\mathit{\boldsymbol{X}}}{\bf \pm {{SD}}} $; %

    食物来源
    Food source
    草鱼 C. idellusA. nobilisC. auratus
    普通池塘
    Common pond
    推水系统
    Push-water system
    普通池塘
    Common pond
    推水系统
    Push-water system
    普通池塘
    Common pond
    推水系统
    Push-water system
    浮游植物 Phytoplankton 14.87±5.66 12.07±3.36
    草鱼饲料 Feed 65.13±21.27 92.33±1.36* 23.40±5.12 25.63±6.60 5.23±0.67 6.60±0.50*
    水体碎屑 Water detritus 7.37±2.67 1.37±0.55* 15.20±2.14 14.73±3.41
    底泥碎屑 Sediment detritus 67.70±19.92 71.93±3.85
    小型浮游动物 Microzooplankton 20.23±1.60 20.97±2.74
    大型浮游动物 Macrozooplankton 27.50±18.62 6.17±1.00 26.37±2.60 26.63±2.97 23.33±19.84 16.90±3.00
    底栖生物 Benthos 3.73±0.40 5.23±1.23
    食物来源
    Food source
    大型浮游动物 Macrozooplankton 小型浮游动物 Microzooplankton
    普通池塘
    Common pond
    推水系统
    Push-water system
    普通池塘
    Common pond
    推水系统
    Push-water system
    浮游植物 Phytoplankton 5.90±3.05 6.07±0.40 5.90±3.05 6.07±0.40
    草鱼饲料 Feed 56.20±17.25 59.33±1.58 56.20±17.25 59.33±1.58
    水体碎屑 Water detritus 8.37±2.86 7.70±0.75 8.37±2.86 7.70±0.75
    底泥碎屑 Sediment detritus 17.60±8.65 14.90±1.30 17.60±8.65 14.90±1.30
    小型浮游动物 Microzooplankton 11.90±2.72 12.00±1.77 11.90±2.72 12.00±1.77
    大型浮游动物 Macrozooplankton
    底栖生物 Benthos
    注:*. 同一生物同行数据表示差异显著 (P < 0.05) Note: *. Significant difference within the same row (P < 0.05)
    下载: 导出CSV

    表  3  两组系统底泥碎屑潜在来源及贡献比例

    Table  3.   Contributions of potential sources to sediment detritus in two aquaculture systems %

    来源
    Source
    普通池塘 Common pond 推水系统 Push-water pond
    变化范围 Range平均值 Mean 变化范围 Range平均值 Mean
    草鱼饲料 Feed 36.00~62.00 55.53±5.42 34.00~56.00 50.07±7.88
    浮游植物 Phytoplankton 0.00~38.00 18.83±0.55 0.00~52.00 22.40±2.88
    水体碎屑 Water detritus 0.00~64.00 25.63±4.90 0.00~66.00 27.53±5.01
    下载: 导出CSV

    表  4  两组系统中各生物组分及碎屑的营养级

    Table  4.   Trophic levels of organisms and   detritus in two aquaculture systems $\overline {\mathit{\boldsymbol{X}}}{\bf \pm {{SD}}} $

    生物和碎屑
    Organisms and detritus
    普通池塘
    Common pond
    推水系统
    Push-water system
    草鱼 C. idellus 1.78±0.06 1.69±0.02
    A. nobilis 2.37±0.00 2.42±0.08
    C. auratus 2.37±0.01 2.40±0.02
    浮游植物 Phytoplankton 1.20±0.06 1.17±0.02
    小型浮游动物 Microzooplankton 2.00 2.00
    大型浮游动物 Macrozooplankton 2.17±0.01 2.11±0.02*
    草鱼饲料 Feed 0.78±0.05 0.77±0.07
    水体碎屑 Water detritus 1.28±0.00 1.41±0.01*
    底泥碎屑 Sediment detritus 1.16±0.01 1.28±0.08
    底栖生物 Benthos 1.56±0.05 1.59±0.01
    注:*.同行数据差异显著 (P<0.05) Note: *. Significant difference within the same row (P <0.05)
    下载: 导出CSV
  • [1] 聂湘平, 王翔, 陈菊芳. 水产养殖与有毒有害污染物残留及其环境影响[J]. 环境科学与技术, 2007, 30(4): 106-110. doi: 10.3969/j.issn.1003-6504.2007.04.038
    [2] 刘兴国, 刘兆普, 徐皓, 等. 生态工程化循环水池塘养殖系统[J]. 农业工程学报, 2010, 26(11): 237-243. doi: 10.3969/j.issn.1002-6819.2010.11.041
    [3] 李谷, 吴恢碧, 姚雁鸿, 等. 循环流水型池塘养鱼生态系统设计与构建[J]. 渔业现代化, 2006(4): 6-7, 19. doi: 10.3969/j.issn.1007-9580.2006.04.005
    [4] 张振东, 肖友红, 范玉华, 等. 池塘工程化循环水养殖模式发展现状简析[J]. 中国水产, 2019(5): 42-45.
    [5] PIEDRAHITA R H. Reducing the potential environmental impact of tank aquaculture effluents through intensification and recirculation[J]. Aquaculture, 2003, 226(1): 35-44.
    [6] CRAB R, AVNMELECH Y, DEFOIRDT T, et al. Nitrogen removal techniques in aquaculture for a sustainable production[J]. Aquaculture, 2007, 270: 1-14. doi: 10.1016/j.aquaculture.2007.05.006
    [7] 奉杰, 田相利, 董双林, 等. 基于EwE模型的三疣梭子蟹、凡纳滨对虾和梭鱼混养系统的能流分析[J]. 中国海洋大学学报 (自然科学版), 2018, 48(4): 24-36.
    [8] COHEN J E, BEAVER R A, COUSINS S H, et al. Improving food webs[J]. Ecology, 1993, 74(1): 252. doi: 10.2307/1939520
    [9] AKIN S, WINEMILLER K O. Seasonal variation in food web composition and structure in a temperate tidal estuary[J]. Estuar Coast, 2006, 29(4): 552-567. doi: 10.1007/BF02784282
    [10] 韩东燕, 麻秋云, 薛莹, 等. 应用碳、氮稳定同位素技术分析胶州湾六丝钝尾虾虎鱼的摄食习性[J]. 中国海洋大学学报 (自然科学版), 2016, 46(3): 67-73.
    [11] HOBSON K A, WELCH H E. Observations of foraging northern fulmars (Fulmarus glacialis) in the Canadian high arctic[J]. Arctic, 1992, 45(2): 150-153.
    [12] WEDCHAPARN O, ZHAO L, FAN Y, et al. Comparison of the trophic niches between two planktivorous fishes in two large lakes using stable isotope analysis[J]. Biochem Syst Ecol, 2016, 68: 148-155. doi: 10.1016/j.bse.2016.07.007
    [13] 徐姗楠, 陈作志, 黄洪辉, 等. 红树林种植-养殖耦合系统中尼罗罗非鱼的食源分析[J]. 中山大学学报 (自然科学版), 2010, 49(1): 101-106.
    [14] FENG J X, GAO Q F, DONG S L, et al. Trophic relationships in a polyculture pond based on carbon and nitrogen stable isotope analyses: a case study in Jinghai Bay, China[J]. Aquaculture, 2014, 428-429: 258-264. doi: 10.1016/j.aquaculture.2014.03.008
    [15] GUO K, ZHAO W, WANG S, et al. Study of food web structure and trophic level in the sea ponds of an optimized culture model (jellyfish-shellfish-fish-prawn)[J]. Aquacult Int, 2014, 22(6): 1783-1791. doi: 10.1007/s10499-014-9782-6
    [16] FENG J, TIAN X L, DONG S L, et al. Trophic Interaction in a Portunus rituberculatus polyculture ecosystem based on carbon and nitrogen stable isotope analysis[J]. J Ocean Univ China, 2018, 17(6): 1432-1440. doi: 10.1007/s11802-018-3655-y
    [17] ANDERSON R K, PARKER P L, LAWRENCE A. A 13C/12C tracer study of the utilization of presented feed by a commercially important shrimp Penaeus vannamei in a pond grow out system[J]. J World Aquacult Soc, 2007, 18(3): 148-155.
    [18] POST D M. Using stable isotopes to estimate trophic position: models, methods, and assumptions[J]. Ecology, 2002, 83(3): 703-718. doi: 10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2
    [19] 金波昌. 池塘养殖刺参食物来源的稳定同位素法研究[D]. 青岛: 中国海洋大学, 2010: 64-65.
    [20] FRANCE R L. Differentiation between littoral and Pelagic food webs in lakes using stable carbon isotopes[J]. Limnol Oceanogr, 1995, 40(7): 1310-1313. doi: 10.4319/lo.1995.40.7.1310
    [21] LEGGETT M, SERVOS M, HESSLEIN R, et al. Biogeochemical influences on the carbon isotope signatures of Lake Ontario biota[J]. Can J Fish Aquat Sci, 1999, 56(11): 2211-2218. doi: 10.1139/f99-151
    [22] FONTUGNE M R, JOUANNEAU J M. Modulation of the particulate organic carbon flux to the ocean by a macrotidal estuary: evidence from measurements of carbon isotopes in organic matter from the Gironde system[J]. Estuar Coastal Shelf S, 1987, 24(3): 377-387. doi: 10.1016/0272-7714(87)90057-6
    [23] EMERSON S, HEDGES J I. Processes controlling the organic carbon content of open ocean sediments[J]. Paleoceanography, 1988, 3(5): 621-634. doi: 10.1029/PA003i005p00621
    [24] BOUTTON T W. Stable carbon isotope ratios of natural materials: II. Atmospheric, terrestrial, marine and freshwater environments[M]//Carbon Isotope Techniques. San Diego: Academic Press Inc., 1991: 173-185.
    [25] PATERSON A W, WHITFIELD A K. A stable carbon isotope study of the food-web in a freshwater-deprived South African Estuary, with particular emphasis on the ichthyofauna[J]. Estuar Coastal Shelf Sci, 1997, 45(6): 705-715. doi: 10.1006/ecss.1997.0243
    [26] YOSHIOKA T, WADA E, HAYASHI H. A stable isotope study on seasonal food web dynamics in a eutrophic lake[J]. Ecology, 1994, 75(3): 835. doi: 10.2307/1941739
    [27] WANG X N, WU Y, JIANG Z J, et al. Quantifying aquaculture-derived dissolved organic matter in the mesocosms of Sanggou Bay using excitation-emission matrix spectra and parallel factor analysis[J]. J World Aquacult Soc, 2017, 48(6): 909-926. doi: 10.1111/jwas.12409
    [28] 皮坤, 张敏, 李庚辰, 等. 人工饵料对主养黄颡鱼和主养草鱼池塘沉降颗粒有机质贡献的同位素示踪[J]. 水生生物学报, 2014, 38(5): 929-937. doi: 10.7541/2014.138
    [29] 李学梅, 朱永久, 王旭歌, 等. 稳定同位素技术分析不同养殖方式下鳙饵料的贡献率[J]. 中国水产科学, 2017, 24(2): 278-283.
    [30] 王赛. 东江鱼类食物网结构与生态系统能流模式研究[D]. 广州: 暨南大学, 2015: 93-100.
    [31] 谢青, 徐勤勤, 王永敏, 等. 三峡水库与长寿湖水库鱼类碳、氮稳定同位素特征及营养级的比较[J]. 湖泊科学, 2019, 31(3): 231-239.
    [32] CAUT S, ANGULO E, COURCHAMP F. Variation in discrimination factors (Δ15N and Δ13C): the effect of diet isotopic values and applications for diet reconstruction[J]. J Appl Ecol, 2009, 46(2): 443-453. doi: 10.1111/j.1365-2664.2009.01620.x
    [33] ZHANG K, TIAN X L, DONG S L, et al. An experimental study on the budget of organic carbon in polyculture systems of swimming crab with white shrimp and short-necked clam[J]. Aquaculture, 2016, 451: 58-64. doi: 10.1016/j.aquaculture.2015.08.029
    [34] 王龙升, 周琼, 谢从新, 等. 两种营养源对主养草鱼池塘浮游生物群落结构与碳/氮转化的影响[J]. 水产学报, 2017, 41(8): 1286-1297.
    [35] ZHANG K, XIE J, YU D G, et al. A comparative study on the budget of nitrogen and phosphorus in polyculture systems of snakehead with bighead carp[J]. Aquaculture, 2018, 483: 69-75. doi: 10.1016/j.aquaculture.2017.10.004
    [36] 张凯, 李志斐, 谢骏, 等. 生态基对大口黑鲈池塘养殖系统水质及能量收支的影响研究[J]. 南方水产科学, 2018, 14(5): 53-59.
    [37] ZHOU B, DONG S L, WANG F. Trophic structure and energy fluxes in a grass carp (Ctenopharyngodon idellus) cultured pond ecosystem[J]. Aquacult Int, 2015, 23(5): 1313-1324. doi: 10.1007/s10499-015-9886-7
    [38] LINDEMAN R L. The trophic-dynamic aspect of ecology[J]. Ecology, 1942, 23(4): 399-418. doi: 10.2307/1930126
    [39] MAYER L M, KEIL R G, MACKO S A, et al. Importance of suspended particulate in riverine delivery of bioavailable nitrogen to coastal zones[J]. Global Biogeochem Cy, 1998, 12(4): 573-579. doi: 10.1029/98GB02267
    [40] CROMEY C J, NICKELL T D, BLACK K D. Depomed modeling the deposition and biological effects of waste solids from marine cage farms[J]. Aquaculture, 2002, 214: 211-239. doi: 10.1016/S0044-8486(02)00368-X
    [41] PUCHER J, FOCKEN U. Uptake of nitrogen from natural food into fish in differently managed polyculture ponds using 15N as tracer[J]. Aquacult Int, 2016, 25(1): 87-105.
  • 加载中
图(3) / 表(4)
计量
  • 文章访问数:  3487
  • HTML全文浏览量:  1884
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-30
  • 修回日期:  2020-01-07
  • 录用日期:  2020-02-14
  • 网络出版日期:  2020-09-28
  • 刊出日期:  2020-06-05

目录

    /

    返回文章
    返回