霍欢欢, 刘瑜, 周秋白, 郭枫, 隗黎丽, 彭墨, 张燕萍, 陈文静. 黄鳝生长差异基因发掘及其调控机制初步研究[J]. 南方水产科学, 2020, 16(1): 1-8. DOI: 10.12131/20190176
引用本文: 霍欢欢, 刘瑜, 周秋白, 郭枫, 隗黎丽, 彭墨, 张燕萍, 陈文静. 黄鳝生长差异基因发掘及其调控机制初步研究[J]. 南方水产科学, 2020, 16(1): 1-8. DOI: 10.12131/20190176
HUO Huanhuan, LIU Yu, ZHOU Qiubai, GUO Feng, WEI Lili, PENG Mo, ZHANG Yanping, CHEN Wenjing. Primary study on differentially expressed genes screening of Monopterus albus and their regulation mechanism[J]. South China Fisheries Science, 2020, 16(1): 1-8. DOI: 10.12131/20190176
Citation: HUO Huanhuan, LIU Yu, ZHOU Qiubai, GUO Feng, WEI Lili, PENG Mo, ZHANG Yanping, CHEN Wenjing. Primary study on differentially expressed genes screening of Monopterus albus and their regulation mechanism[J]. South China Fisheries Science, 2020, 16(1): 1-8. DOI: 10.12131/20190176

黄鳝生长差异基因发掘及其调控机制初步研究

Primary study on differentially expressed genes screening of Monopterus albus and their regulation mechanism

  • 摘要: 为揭示黄鳝 (Monopterus albus) 生长相关基因的调控机制,对相同亲本具有显著性生长差异的黄鳝肝脏进行了转录组测序分析。结果显示,转录组测序共得到19 149个基因,其中差异基因598个,差异基因中有303个基因显著上调,295个显著下调。KEGG通路分析发现,598个差异基因分属262条通路中,其中有38条通路显著富集。GO功能注释发现,与生长相关的差异基因有7个,分别为col1α1、nkx6.1、nnosplexina4、igfbp1、pcgf1和h3.3,这些基因表达水平的变化可能对黄鳝神经、内分泌和消化系统的发育及生理活动产生了调节作用从而影响了黄鳝的生长。结合KEGG通路分析发现,col1α1所在的利什曼病通路和nnos所在的精氨酸和脯氨酸代谢通路富集显著,说明其对黄鳝生长具有重要调节作用。

     

    Abstract: In order to reveal the regulatory mechanism of growth related genes in eels (Monopterus albus), we carried out a transcriptome sequencing analysis on the liver of the eels that had significant growth difference with the same parent. A total of 19 149 genes were obtained by transcriptome sequencing, among which 598 were differentially expressed (303 and 295 were significantly up-regulated and down-regulated, respectively). KEGG pathway analysis shows that 598 differentially expressed genes belonged to 262 pathways, among which 38 pathways are significantly enriched. The GO functional annotation reveals that the seven differentially related genes were col1α1, nkx6.1, nnos, plexina4, igfbp1, pcgf1and h3.3, and variation in the expression levels of these genes had regulated the development and physiological activities of the nervous system, endocrine system and digestive system of the eels, which then affected their growth. Combined with KEGG pathway analysis, it is found that the leishmaniasis pathway, in which col1α1 is located, and the arginine and proline metabolic pathway, in which nnos is located, are significantly enriched, revealing their important influence on the growth of eels.

     

/

返回文章
返回