留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自然感染无乳链球菌罗非鱼的比较病理学及毒力基因谱分析

谢云丹 冯娟 刘婵 邓益琴 王江勇 苏友禄

谢云丹, 冯娟, 刘婵, 邓益琴, 王江勇, 苏友禄. 自然感染无乳链球菌罗非鱼的比较病理学及毒力基因谱分析[J]. 南方水产科学, 2019, 15(2): 47-57. doi: 10.12131/20180185
引用本文: 谢云丹, 冯娟, 刘婵, 邓益琴, 王江勇, 苏友禄. 自然感染无乳链球菌罗非鱼的比较病理学及毒力基因谱分析[J]. 南方水产科学, 2019, 15(2): 47-57. doi: 10.12131/20180185
Yundan XIE, Juan FENG, Chan LIU, Yiqin DENG, Jiangyong WANG, Youlu SU. Comparative pathological study of tilapia naturally infected with Streptococcus agalactiae and virulence gene profiling of isolated strains[J]. South China Fisheries Science, 2019, 15(2): 47-57. doi: 10.12131/20180185
Citation: Yundan XIE, Juan FENG, Chan LIU, Yiqin DENG, Jiangyong WANG, Youlu SU. Comparative pathological study of tilapia naturally infected with Streptococcus agalactiae and virulence gene profiling of isolated strains[J]. South China Fisheries Science, 2019, 15(2): 47-57. doi: 10.12131/20180185

自然感染无乳链球菌罗非鱼的比较病理学及毒力基因谱分析

doi: 10.12131/20180185
基金项目: 国家自然科学基金项目 (31502210);“广东特支计划”科技青年拔尖人才项目 (2016TQ03N275);广州市珠江科技新星项目 (201610010015)
详细信息
    作者简介:

    谢云丹(1994—),女,硕士研究生,从事水产动物病原学研究。E-mail: 1159412450@qq.com

    通讯作者:

    苏友禄(1981—),男,博士,副研究员,从事水产动物免疫与防治技术研究。E-mail: suyoulu@scsfri.ac.cn

  • 农业部渔业渔政管理局.中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2018.
  • 中图分类号: S 941.42

Comparative pathological study of tilapia naturally infected with Streptococcus agalactiae and virulence gene profiling of isolated strains

  • 摘要:

    在自然感染无乳链球菌(Streptococcus agalactiae)的罗非鱼(Oreochromis niloticus)成鱼、稚鱼和自然携带无乳链球菌的罗非鱼体内分别获得14株、4株和2株无乳链球菌。临床和组织病理学分析显示,罗非鱼成鱼出现无规则游动,脑、眼眶、鳃和鳍条充血,眼球突出、白浊,内脏器官肿大、充血,以肾小管玻璃样变性、脑膜炎和心外膜炎等组织病理学变化为特征;罗非鱼稚鱼体表无明显症状,但部分内脏器官呈现肿大、充血现象,以脾脏血管区出血、肾小管上皮细胞变性、脑组织炎症反应较轻为其主要组织病理学特征。此外,罗非鱼胃固有层内及稚鱼肝脏组织中有大量的嗜酸性粒细胞浸润,可观察到无乳链球菌在成鱼的脑、心脏以及稚鱼肝脏中增殖;自然携带无乳链球菌的罗非鱼临床症状和组织学病变均不明显。PCR检测发现,各无乳链球菌毒力基因谱相同,但自然感染无乳链球菌的罗非鱼成鱼、稚鱼和自然携带无乳链球菌的罗非鱼的病理学损伤差异显著。

    1)  农业部渔业渔政管理局.中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2018.
  • 图  1  罗非鱼脑组织PCR检测结果

    M. Maker DL 2 000;阳. 阳性对照;阴. 阴性对照;1~159. 采自开平养殖场;160~166. 采自高州平养殖场;167~170. 采自廉江养殖场;171~174. 采自吴川养殖场;175~180. 采自惠州养殖场;181~188. 采自河源养殖场

    Figure  1.  PCR detection results of tilapia brain

    positive. positive control; negative. negative control; 1−159. from Kaiping farm; 160-166. from Gaozhouping farm; 167−170. from Lianjiang farm; 171−174. from Wuchuan farm; 175−180. from Huizhou farm; 181−188. from Heyuan farm

    图  2  鱼感染无乳链球菌的眼观剖检变化

    罗非鱼成鱼:A. 眼眶充血、眼球突出(↓),肠道发炎、肠壁变薄、内容物发黄(*);B. 脑充血、出血(↓);C. 肝脏肿大、充血、胆囊肿大(*),脾脏肿大、充血,肾脏肿大(↓)。罗非鱼稚鱼:体表无明显症状;D. 肝脏充血肿大(*),脾脏肿大(*),肠壁变薄、内容物发黄;自然携带无乳链球菌罗非鱼:E. 体表正常;内脏无明显症状。斑马鱼:F. 身体弯曲,眼球浑浊,鳍条和腹部充血、出血(↓)

    Figure  2.  Change in anatomy of fish infected with S. agalactiae

    Adult tilapia: A. orbital congestion and exophthalmos (↓), intestinal inflammation, thinning of intestinal wall and yellowing of contents (*); B. cerebral hyperemia and hemorrhage (↓); C. liver enlargement, congestion, gallbladder enlargement (*), splenomegaly, hyperemia and kidney enlargement (↓). Juvenile tilapia: no obvious symptoms on the body surface; D. hepatic hyperemia (*), splenomegaly (*), thinning of intestinal wall and yellowing of contents; tilapia naturally carrying S. agalactiae: E. no obvious symptoms on the body surface; no visceral symptoms. Zebrafish: F. bent body, corneal opacity, and congestion of fins (↓)

    图  3  各株无乳链球菌感染斑马鱼后的累积死亡率

    Figure  3.  Cumulative motality rate of zebrafish infected with different S. agalactiae strains

    图  4  自然感染无乳链球菌罗非鱼成鱼组织病理学

    A. 脑,脑膜炎,脑膜增厚,大量的炎症细胞浸润,脑血管充血;B. 脑,A图区域放大,炎症细胞聚集 (*),血管周围有大量增殖的无乳链球菌 (↓);C. 脑,脑血管内微血栓形成 (↓);D. 肝脏,局灶性炎症反应,大量的炎症细胞聚集 (*);E. 肠道,固有层充血 (↓),上皮细胞轻微脱落;F. 鳃,鳃丝上皮细胞增生、融合 (↓),鳃血窦充血 (*);G. 心脏,心外膜炎,心外膜增厚,大量炎症细胞浸润;H. 心脏,G图区域放大,血管周围大量增殖的无乳链球菌 (↓),血管内炎症细胞增生 (*);I. 心脏,心外膜内的化脓灶内有大量菌体、细胞碎片 (*)及中性粒细胞 (↓);J. 脾脏,出血 (*),脾动脉上皮细胞损伤,血栓形成 (↓);K. 胃,胃固有层内炎症反应,血管充血 (*),炎区内大量的嗜酸性粒细胞浸润 (↓);L. 肾脏,肾小管玻璃样变性 (↓),肾间质出血 (*)

    Figure  4.  Histopathology of adult tilapia naturally infected with S. agalactiae

    A. brain, meningitis, thickening of the meninges, infiltration of a large number of inflammatory cells, cerebral vascular congestion; B. brain,magnified micrograph of the zone in the black frame in A, inflammatory cell aggregation (*), a large number of proliferating S. agalactiae around the blood vessels (↓); C. brain, intravascular microthrombus formation (↓); D. liver, focal inflammatory response, massive accumulation of inflammatory cells (*); E. intestinal, lamina propria congestion (↓), epithelial cells slightly shed; F. gill, gill filament epithelial cell hyperplasia, fusion (↓), sinus congestion (*); G. heart, epicarditis, epicardial thickening, a large number of inflammatory cell infiltration; H. heart, magnified micrograph of the zone in the black frame in G, massive proliferation around the blood vessels S. agalactiae (↓), intravascular inflammatory cell proliferation (*); I. heart, epicardial septic foci, a large number of cells, cell debris (*) and neutrophils in the abscess (↓); J. spleen , hemorrhage (*), splenic artery epithelial cell damage, thrombosis (↓); K. stomach, gastric lamina propria inflammation, vascular congestion (*), a large number of eosinophil infiltration in the inflammation area (↓); L. kidney, kidney tubulous degeneration (↓), renal interstitial hemorrhage (*)

    图  5  自然感染无乳链球菌罗非鱼稚鱼组织病理学

    A. 脑,脑炎,小胶质细胞聚集,血管充血;B. 脑,A图区域放大,大量增生的小胶质细胞 (*)和血管充血 (↓);C. 肝脏,肝脏出血 (*),血管周围大量嗜酸性粒细胞浸润;D. 肝脏,C图区域放大,大量增殖的无乳链球菌 (*)和增生的嗜酸性粒细胞 (↓);E. 肠道,肠绒毛变短 (↓),上皮细胞脱落 (*);F. 鳃,鳃丝上皮细胞脱落呈“棒状” (↓),鳃血窦充血 (*);G. 心脏;H. 脾脏,淋巴细胞区缩小,血管区出血 (*);I. 胃,胃固有层内炎症反应;J. 胃,I图区域放大,大量的嗜酸性粒细胞 (↓)和中性粒细胞聚集 (*);K. 肾脏,肾小管变性、坏死;L. 肾,K图区域放大,肾小管上皮细胞变性、脱落 (*)

    Figure  5.  Histopathology of juvenile tilapia naturally infected with S. agalactiae

    A. brain, encephalitis, microglia accumulation, vascular congestion; B. brain, magnified micrograph of the zone in the black frame in A, massive proliferation of microglia (*) and vascular congestion (↓); C. liver, liver hemorrhage (*), blood vessels a large number of eosinophil infiltration around; D. liver, magnified micrograph of the zone in the black frame in C, large proliferation of S. agalactiae (*) and hyperplastic eosinophils (↓); E. intestinal, intestinal villi shortened (↓), epithelial cell shedding (*); F. gill, gill silk epithelial cell shedding is "sticky"(↓), sinus congestion (*); G. heart; H. spleen, lymphocyte area shrinkage, vascular area bleeding (*); I. stomach, Inflammatory reaction in the lamina propria of the stomach; J. stomach, magnified micrograph of the zone in the black frame in I, a large number of eosinophils (↓) and neutrophil accumulation (*); K. kidney, tubular degeneration, necrosis; L. kidney, magnified micrograph of the zone in the black frame in K, renal tubular epithelial cells degeneration, shedding (*)

    图  6  自然携带无乳链球菌的罗非鱼组织病理学

    A. 脑;B. 肝脏,肝细胞轻微肿胀;C. 肠道;D. 鳃;E. 心脏;F. 脾脏,脾血窦充血;G. 胃,固有层轻微水肿;H. 肾脏,肾小管上皮轻微变性

    Figure  6.  Histopathology of tilapia carrying S. agalactiae

    A. brain; B. liver, liver cells slightly swollen; C. intestine; D. gill; E. heart; F. spleen, spleen sinus congestion; G. stomach, lamina propria edema; H. kidney, the epithelium of kidney tubules is slightly degenerated.

    图  7  无乳链球菌21种毒力基因PCR扩增

    M. DNA Marker (DL 2 000); 1. TKP1601; 2. TGZ1601

    Figure  7.  PCR amplification of 21 virulence gene of S. agalactiae

    表  1  样品采集和无乳链球菌菌株分离信息

    Table  1.   Sample collection and information of separation of S. agalactiae strain

    质量/g
    mass
    采样地
    sampling city
    养殖密度/尾·hm–2
    breeding density/ind·hm–2
    发病史
    history of disease
    样品数/尾
    number of samples
    菌株数
    number of strains
    菌株编号
    strain No.
    检出率/%
    detection rate
    ≈500开平市≈1001592TKP1601-021.26
    ≈15高州市≈200爆发74TGZ1601-0457.10
    ≈500廉江市44TLJ1601-0463.64
    吴川市42TWC1601-02
    惠州市60
    河源市88TLC1601-08
    下载: 导出CSV

    表  2  引物列表

    Table  2.   Primers of this study

    引物
    primer
    上游引物序列 (5'−3')
    forward primer sequence
    下游引物序列 (5'−3')
    reverse primer sequence
    扩增靶标
    amplification target
    长度/bp
    length
    16S rDNA-F/RAGAGTTTGATCC TGGCTCAGTACGGCTACCTTGTTACGACTT16S rDNA1 472
    sdi-F/RATTCTCCTCCTGGCAAAGCCTGACGCTTGGTAGTTGCTGT16S−23S rDNA192
    fbsA-F/RAGTGTTGGAAATCAAAGTCAAGGTTTCATTGCGTCTCAAACCGC纤维蛋白结合蛋白A (fbsA)924
    cfb-F/RAACTCTAGTGGCTGGTGCATCTCCAACAGCATGTGTGATTGCCAMP因子基因 (cfb)650
    dltR-F/RGTCTGAAGGTCCCCAAACCTTGTTACCCAAACGCTCAGGAT调节蛋白基因 (dltR)392
    ponA-F/RACAACTTGCTTTGCTCGCTGAGAGCCCTTCTGGCATTGTC青霉素结合蛋白基因 (ponA)1 337
    hylB-F/RTCCACAACCCGTCACAACACAACGCGCCCCATATCTACTA透明质酸酶基因 (hylB)790
    cspA-F/RTGCACGTAACCAGTATCGCAGCACCGAGTTTAACGGCATC丝氨酸蛋白酶基因 (cspA)175
    sodA-F/RTGATGCGCTTGAGCCACATAGCTTTGATGTAGTTAGGACGAACA超氧化物歧化酶基因 (sodA)513
    sip-F/RACAGATACGACGTGGACAGCACCACGATCTGGCATTGCAT表面免疫相关蛋白基因 (sip)1 173
    fbsB-F/RAGTTGCGCAAACTTCTGTCCTTTCCGCAGTTGTTACACCG纤维蛋白结合蛋白B基因 (fbsB)158
    iagA-F/RGCATGGCCATTCCACTGAAGGCTAGCACTCATGGCACCTT侵袭相关基因 (iagA)493
    scpB-F/RTGCGGCCTTTATCAGTCGAAAACAGTCCCATGATACCCGCC5a肽酶基因 (scpB)273
    bca-F/RTCAAGTTTGGTGCAGCTTCTGTCCGGTACTGACAATACTAACAATαC蛋白基因 (bca)616
    srr-1-F/RATGTTGCAGTAAAGCGCTGCGGAAGAGAGTCGTTTTCGGC富含丝氨酸重复蛋白基因 (srr-1)727
    bibA-F/RTGCATAATATCCAGGTGTAGGCATGAGAGATTGGGAAGTGGTGC免疫原性细菌黏附蛋白基因 (bibA)943
    psaA-F/RAGCTGTCACCCTTTTGACCTTTAGGCTTAGGTGCCTGTGCT肺炎球菌表面抗原A基因 (psaA)828
    lmb-F/RATTTGTGACGCAACACACGGTCTTGTTTCCGCTTGGAGCA层黏连蛋白结合蛋白基因 (lmb)263
    spb1-F/RGACATGGGGAGATGGTGGTGAGCTTCTGTGCCCCATTCAA溶血素Ⅲ (spb1)652
    bac-F/RTGATTCCCTTTTGCTCTGCCAGTTCATGGGAAGCGTTGCTCβC蛋白基因 (bac)557
    pavA-F/RTCGACTTACATTGCCCCACCGGCGGCATCTGTCTTAACCT纤维蛋白结合蛋白基因 (pavA)996
    cppA-F/RTGCAAATCTTGTCCCTGTGCTCGTACTCGTGCGGTGAATGC3降解蛋白酶基因 (cppA)387
    cylE-F/RATTCTCCTCCTGGCAAAGCCTGACGCTTGGTAGTTGCTGTβ-溶血素/溶细胞素基因 (cylE)176
    下载: 导出CSV

    表  3  21对毒力基因检测结果

    Table  3.   Detection results of 21 virulence genes

    毒力基因
    virulence gene
    菌株 strain
    1234567891011121314151617181920
    fbsA++++++++++++++++++++
    cfb++++++++++++++++++++
    dltR++++++++++++++++++++
    ponA++++++++++++++++++++
    hylB++++++++++++++++++++
    cspA++++++++++++++++++++
    sodA++++++++++++++++++++
    sip++++++++++++++++++++
    fbsB++++++++++++++++++++
    iagA++++++++++++++++++++
    scpB
    bca++++++++++++++++++++
    srr-1++++++++++++++++++++
    bibA++++++++++++++++++++
    psaA++++++++++++++++++++
    lmb
    spb1++++++++++++++++++++
    bac++++++++++++++++++++
    pavA++++++++++++++++++++
    cppA++++++++++++++++++++
    cylE++++++++++++++++++++
     注:1−2. TKP1601−TKP1602;3−6. TGZ1601−TGZ1604;7−10. TLJ1601−TLJ1604;11−12. TWC1601−TWC1602;13−20. TLC1601−
    TLC1608
    下载: 导出CSV
  • [1] 顾慧敏, 胡引. 1例分娩期合并无乳链球菌败血症患者的抢救及护理[J]. 中国实用护理杂志, 2014, 30(12): 56-57.
    [2] SANZROJAS P, CABEZAOSORIO L, HERMOSA C, et al. Acute meningitis by Streptococcus agalactiae in a immunocompetent male[J]. Rev Esp Quim, 2013, 26(1): 78-79.
    [3] JAWA G, HUSSAIN Z, da SILVA O. Recurrent late-onset group B Streptococcus sepsis in a preterm infant acquired by expressed breastmilk transmission: a case report[J]. Breastfeed Med, 2013, 8(1): 134-136. doi: 10.1089/bfm.2012.0016
    [4] VILLENA R M A, OLALLA S J, de la TORRE L J, et al. Streptococcus agalactiae induced cavitated pneumonia[J]. Rev Clin Esp, 2009, 209(5): 252-254. doi: 10.1016/S0014-2565(09)71245-7
    [5] ELLIOTT J A, FACKLAM R R, RICHTER C B. Whole-cell protein patterns of nonhemolytic group B, type Ib, streptococci isolated from humans, mice, cattle, frogs, and fish[J]. J Clin Microbiol, 1990, 28(3): 628-630.
    [6] EVANS J J, BOHNSACK J F, KLESIUS P H, et al. Phylogenetic relationships among Streptococcus agalactiae isolated from piscine, dolphin, bovine and human sources: a dolphin and piscine lineage associated with a fish epidemic in Kuwait is also associated with human neonatal infections in Japan[J]. J Med Microbiol, 2008, 57(11): 1369-1376. doi: 10.1099/jmm.0.47815-0
    [7] GENG Y, WANG K Y, HUANG X L, et al. Streptococcus agalactiae, an emerging pathogen for cultured ya-fish, Schizothorax prenanti, in China[J]. Transbound Emerg Dis, 2012, 59(4): 369-375. doi: 10.1111/tbed.2012.59.issue-4
    [8] 崔静雯, 汪开毓, 贺扬, 等. 无乳链球菌感染尼罗罗非鱼的脑膜炎模型[J]. 水产学报, 2015, 39(12): 1883-1893.
    [9] 王瑞, 李莉萍, 黄婷, 等. 罗非鱼组织内无乳链球菌实时荧光定量PCR检测方法建立[J]. 南方水产科学, 2015, 11(3): 41-46. doi: 10.3969/j.issn.2095-0780.2015.03.007
    [10] 卢迈新, 黎炯, 叶星, 等. 广东与海南养殖罗非鱼无乳链球菌的分离、鉴定与特性分析[J]. 微生物学通报, 2010, 37(5): 766-774.
    [11] HEMÁNDEZ E, FIGUEROA J, IREGUI C. Streptococcosis on a red tilapia, Oreochromis sp., farm: a case study[J]. J Fish Dis, 2009, 32(3): 247-252. doi: 10.1111/jfd.2009.32.issue-3
    [12] 祝璟琳, 杨弘. 鱼源无乳链球菌致病机理研究进展[J]. 广东海洋大学学报, 2013, 33(6): 92-96.
    [13] CHIDEROLI R T, AMOROSO N, MAINARDI R M, et al. Emergence of a new multidrug-resistant and highly virulent serotype of Streptococcus agalactiae in fish farms from Brazil[J]. Aquaculture, 2017, 479: 45-51. doi: 10.1016/j.aquaculture.2017.05.013
    [14] 韦现色, 林勇, 杨慧赞, 等. 广西罗非鱼链球菌病的流行及防治[J]. 广西畜牧兽医, 2013, 29(1): 57-60. doi: 10.3969/j.issn.1002-5235.2013.01.031
    [15] 方伟, 梁宇恒, 宁丹, 等. 广东地区感染养殖罗非鱼的无乳链球菌分子分型研究[J]. 中山大学学报(自然科学版), 2016, 55(2): 97-101.
    [16] SU Y L, FENG J, LIU C, et al. Dynamic bacterial colonization and microscopic lesions in multiple organs of tilapia infected with low and high pathogenic Streptococcus agalactiae strains[J]. Aquaculture, 2017, 471: 190-203. doi: 10.1016/j.aquaculture.2017.01.013
    [17] PATRAS K A, NIZET V. Group B streptococcal maternal colonization and neonatal disease: molecular mechanisms and preventative approaches[J]. Front Pediatr, 2018, 6: 27. doi: 10.3389/fped.2018.00027
    [18] LECLERCQ S Y, SULLIVAN M J, IPE D S, et al. Pathogenesis of Streptococcus urinary tract infection depends on bacterial strain and β-hemolysin/cytolysin that mediates cytotoxicity, cytokine synthesis, inflammation and virulence[J]. Sci Rep-UK, 2016, 6: 29000. doi: 10.1038/srep29000
    [19] GENDRIN C, LEMBO A, WHIDBEY C, et al. The sensor histidine kinase RgfC affects group B streptococcal virulence factor expression independent of its response regulator RgfA[J]. Infect Immun, 2015, 83(3): 1078-1088. doi: 10.1128/IAI.02738-14
    [20] 李庆勇, 可小丽, 卢迈新, 等. 罗非鱼无乳链球菌C5a肽酶(ScpB)的原核表达及其免疫原性[J]. 中国水产科学, 2014, 21(1): 169-179.
    [21] 曾祖聪, 可小丽, 卢迈新, 等. 罗非鱼无乳链球菌LrrG-Sip融合蛋白免疫原性研究[J]. 南方水产科学, 2017, 13(3): 51-57. doi: 10.3969/j.issn.2095-0780.2017.03.007
    [22] ZHANG D, LI A, GUO Y, et al. Molecular characterization of Streptococcus agalactiae in diseased farmed tilapia in China[J]. Aquaculture, 2013, 412(6): 64-69.
    [23] KANNIKA K, PISUTTHARACHAI D, SRISAPOOME P, et al. Molecular serotyping, virulence gene profiling and pathogenicity of Streptococcus agalactiae isolated from tilapia farms in Thailand by multiplex PCR[J]. J Appl Microbiol, 2017, 122(6): 1497-1507. doi: 10.1111/jam.2017.122.issue-6
    [24] BERRIDGE B R, BERCOVIER H, FRELIER P F. Streptococcus agalactiae and Streptococcus difficile 16S-23S intergenic rDNA: genetic homogeneity and species-specific PCR[J]. Vet Microbiol, 2001, 78(2): 165-173. doi: 10.1016/S0378-1135(00)00285-6
    [25] PATTERSON H, SARALAHTI A, PARIKKA M, et al. Adult zebrafish model of bacterial meningitis in Streptococcus agalactiae infection[J]. Dev Comp Immunol, 2012, 38(3): 447-455. doi: 10.1016/j.dci.2012.07.007
    [26] KAYANSAMRUAJ P, PIRARAT N, KATAGIRI T, et al. Molecular characterization and virulence gene profiling of pathogenic Streptococcus agalactiae populations from tilapia (Oreochromis sp.) farms in Thailand[J]. J Vet Diagn Invest, 2014, 26(4): 488. doi: 10.1177/1040638714534237
    [27] GODOY D T, CARVALHOCASTRO G A, LEAL C A, et al. Genetic diversity and new genotyping scheme for fish pathogenic Streptococcus agalactiae[J]. Lett Appl Microbiol, 2013, 57(6): 476-483. doi: 10.1111/lam.2013.57.issue-6
    [28] UDO E E, BOSWIHI S S, ALSWEIH N. Genotypes and virulence genes in group B Streptococcus isolated in the maternity hospital, Kuwait[J]. Med Prin Pract, 2013, 22(5): 453-457. doi: 10.1159/000349932
    [29] RAJAGOPAL L. Understanding the regulation of group B streptococcal virulence factors[J]. Future Microbiol, 2009, 4(2): 201-221. doi: 10.2217/17460913.4.2.201
    [30] EVANS J J, PASNIK D J, KLESIUS P H. Differential pathogenicity of five Streptococcus agalactiae isolates of diverse geographic origin in Nile tilapia (Oreochromis niloticus L.)[J]. Aquacult Res, 2015, 46(10): 2374-2381. doi: 10.1111/are.2015.46.issue-10
    [31] 祝璟琳, 邹芝英, 李大宇, 等. 尼罗罗非鱼无乳链球菌病的病理学研究[J]. 水产学报, 2014, 38(11): 1937-1944.
    [32] ABUSELIANA A F, DAUD H H M, AZIZ S A, et al. Pathogenicity of Streptococcus agalactiae isolated from a fish farm in selangor to juvenile red tilapia (Oreochromis sp.)[J]. J Anim Vet Adv, 2011, 10(7): 914-919. doi: 10.3923/javaa.2011.914.919
    [33] 姜建强, 额尔敦木图, 包花尔, 等. 嗜酸性粒细胞与寄生虫感染免疫的相关性[J]. 黑龙江畜牧兽医, 2016(2): 63-67.
    [34] REIMERT C M, FITZSIMMONS C M, JOSEPH S, et al. Eosinophil activity in Schistosoma mansoni infections in vivo and in vitro in relation to plasma cytokine profile pre- and posttreatment with praziquantel[J]. Clin Vaccine Immunol, 2006, 13(5): 584-593. doi: 10.1128/CVI.13.5.584-593.2006
    [35] DORAN K S, LIU G Y, NIZET V. Group B streptococcal β-hemolysin/cytolysin activates neutrophil signaling pathways in brain endothelium and contributes to development of meningitis[J]. J Clin Invest, 2003, 112(5): 736-744. doi: 10.1172/JCI200317335
    [36] RING A, BRAUN J S, POHL J, et al. Group B streptococcal β-hemolysin induces mortality and liver injury in experimental sepsis[J]. J Infect Dis, 2002, 185(12): 1745-1753. doi: 10.1086/jid.2002.185.issue-12
    [37] CHENG Q, CARLSON B, PILLAI S, et al. Antibody against surface-bound C5a peptidase is opsonic and initiates macrophage killing of group B Streptococci[J]. Infect Immun, 2001, 69(4): 2302-2308. doi: 10.1128/IAI.69.4.2302-2308.2001
    [38] BOHNSACK J F, WIDJAJA K, GHAZIZADEH S, et al. A role for C5 and C5a-ase in the acute neutrophil response to group B streptococcal infections[J]. J Infect Dis, 1997, 175(4): 847-855. doi: 10.1086/jid.1997.175.issue-4
    [39] 胡会杰, 张琪, 周明旭, 等. 不同禽源致病性大肠杆菌毒力基因分布规律研究[J]. 中国家禽, 2015, 37(10): 34-37.
    [40] LIN P Y, LAN R, SINTCHENKO V, et al. Computational bacterial genome-wide analysis of phylogenetic profiles reveals potential virulence genes of Streptococcus agalactiae[J]. PloS One, 2011, 6(4): e17964. doi: 10.1371/journal.pone.0017964
    [41] WANG Z, GUO C, XU Y, et al. Two novel functions of hyaluronidase from Streptococcus agalactiae are enhanced intracellular survival and inhibition of proinflammatory cytokine expression[J]. Infect Immun, 2014, 82(6): 2615. doi: 10.1128/IAI.00022-14
    [42] BACHRACH G, ZLOTKIN A, HURVITZ A, et al. Recovery of Streptococcus iniae from diseased fish previously vaccinated with a Streptococcus vaccine[J]. Appl Environ Micro, 2001, 67(8): 3756. doi: 10.1128/AEM.67.8.3756-3758.2001
    [43] ALHARBI A H. Phenotypic and genotypic characterization of Streptococcus agalactiae isolated from hybrid tilapia (Oreochromis niloticus×O. aureus)[J]. Aquaculture, 2016, 464: 515-520. doi: 10.1016/j.aquaculture.2016.07.036
    [44] ELDAR A, BEJERANO Y, LIVOFF A, et al. Experimental streptococcal meningo-encephalitis in cultured fish[J]. Vet Microbiol, 1995, 43(1): 33-40. doi: 10.1016/0378-1135(94)00052-X
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  3947
  • HTML全文浏览量:  1853
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-17
  • 修回日期:  2018-11-05
  • 录用日期:  2018-12-21
  • 网络出版日期:  2018-12-25
  • 刊出日期:  2019-04-05

目录

    /

    返回文章
    返回