Volume 17 Issue 5
Sep.  2021
Turn off MathJax
Article Contents
Qingzhao LIAO, Fuyan CHEN, Ya QIN, Chanchan HUANG, Luodong HUANG, Peihong SHEN. Effects of feeding Candida ethanolica GXU01 on growth, immunity and intestinal flora of tilapia[J]. South China Fisheries Science, 2021, 17(5): 10-17. doi: 10.12131/20200258
Citation: Qingzhao LIAO, Fuyan CHEN, Ya QIN, Chanchan HUANG, Luodong HUANG, Peihong SHEN. Effects of feeding Candida ethanolica GXU01 on growth, immunity and intestinal flora of tilapia[J]. South China Fisheries Science, 2021, 17(5): 10-17. doi: 10.12131/20200258

Effects of feeding Candida ethanolica GXU01 on growth, immunity and intestinal flora of tilapia

doi: 10.12131/20200258
  • Received Date: 2020-12-17
  • Accepted Date: 2021-03-23
  • Rev Recd Date: 2021-03-16
  • Available Online: 2021-04-12
  • Publish Date: 2021-09-30
  • To explore the probiotic potential of Candida ethanolica GXU01 in tilapia culture and to find ecological and friendly feeding bacteria for tilapia sustainable cultivation, we used C. ethanolica GXU01 as feed-additive to feed tilapia. Then we determined the growth performance, intestinal digestive enzymes, serum non-specific immune indexes and intestinal microbial community structure, and challenged the tilapia with Streptococcus agalactiae, so as to comprehensively evaluate the effects of C. ethanolica GXU01 on the growth and immunity of tilapia. The results show that the growth performance, digestive enzyme activity, serum lysozyme activity and complement C3 content of tilapia could be significantly improved by feeding C. ethanolica GXU01 (P<0.05). The abundance of Fusobacteria, Cetobacterium and Akkermansia in the intestinal tract of tilapia increased significantly and those of Cyanobacteria decreased significantly after feed of C. ethanolica GXU01. In the challenge test, the survival rate of tilapia fed with diet containing C. ethanolica GXU01 increased by 26.66%. The study shows that C. ethanolica GXU01 promotes the intestinal digestive ability and immune resistance of tilapia.
  • loading
  • [1]
    WANG M, LU M. Tilapia polyculture: a global review[J]. Aquacult Res, 2016, 47(8): 2 363-2 374. doi: 10.1111/are.12708
    [2]
    ZHU J, GAN X, AO Q, et al. Basal polarization of the immune responses to Streptococcus agalactiae susceptible and resistant tilapia (Oreochromis niloticus)[J]. Fish Shellfish Immunol, 2018, 75: 336-345. doi: 10.1016/j.fsi.2018.01.022
    [3]
    LIU L, LI Y W, HE R Z, et al. Outbreak of Streptococcus agalactiae infection in barcoo grunter, Scortum barcoo (McCulloch & Waite), in an intensive fish farm in China[J]. J Fish Dis, 2014, 37(12): 1 067-1 072. doi: 10.1111/jfd.12187
    [4]
    DAWOOD M A O, KOSHIO S, AAGELES E M. Beneficial roles of feed additives as immunostimulants in aquaculture: a review[J]. Reuv Aquacult, 2018, 10(4): 950-974. doi: 10.1111/raq.12209
    [5]
    REYES B M, TOVAR R D, ASCENCIO V F, et al. Effects of dietary supplementation with probiotic live yeast Debaryomyces hansenii on the immune and antioxidant systems of leopard grouper Mycteroperca rosacea infected with Aeromonas hydrophila[J]. Aquacult Res, 2011, 42(11): 1676-1686. doi: 10.1111/j.1365-2109.2010.02762.x
    [6]
    ABDEL T M. Interactive effects of dietary protein and live bakery yeast, Saccharomyces cerevisiae on growth performance of Nile tilapia, Oreochromis niloticus (L.) fry and their challenge against Aeromonas hydrophila infection[J]. Aquacult Int, 2012, 20(2): 317-331. doi: 10.1007/s10499-011-9462-8
    [7]
    SONMEZ A Y. Evaluating two different additive levels of fully autolyzed yeast, Saccharomyces cerevisiae, on rainbow trout (Oncorhynchus mykiss) growth performance, liver histology and fatty acid composition[J]. Turk J Fish Aquat Sc, 2017, 17(2): 379-385.
    [8]
    AYIKU S, SHEN J, TAN B, et al. Effects of dietary yeast culture on shrimp growth, immune response, intestinal health and disease resistance against Vibrio harveyi[J]. Fish Shellfish Immunol, 2020, 102: 286-295. doi: 10.1016/j.fsi.2020.04.036
    [9]
    MOHSEN A T, MAMDOUH A A M, MAALY A M. Use of live baker's yeast, Saccharomyces cerevisiae, in practical diet to enhance the growth performance of galilee tilapia, Sarotherodon galilaeus (L.), and its resistance to environmental copper toxicity[J]. J World Aquacult Soc, 2010, 41: 1-5.
    [10]
    RUGGIRELLO M, NUCERA D, CANNONI M, et al. Antifungal activity of yeasts and lactic acid bacteria isolated from cocoa bean fermentations[J]. Food Res Int, 2019, 115: 519-525. doi: 10.1016/j.foodres.2018.10.002
    [11]
    XING X, WANG Y, HUO N, et al. Candida ethanolica strain Y18 enhances aroma of Shanxi aged-vinegar[J]. Food Sci Technol Res, 2018, 24(6): 1069-1081. doi: 10.3136/fstr.24.1069
    [12]
    COULIBALY W H, BOUATENIN K M J, KOUANE A K, et al. Use of non-Saccharomyces yeast strains as starter cultures to enhance fermented mango juice production[J]. Sci Afr, 2020, 7: 220-226.
    [13]
    FERNANDES T, CARVALLHO B F, MANTOVANI H C, et al. Identification and characterization of yeasts from bovine rumen for potential use as probiotics[J]. J Appl Microbiol, 2019, 127(3): 845-855. doi: 10.1111/jam.14350
    [14]
    INOUE S, SUZUKI U K, KOMORI Y, et al. Fermentation of non-sterilized fish biomass with a mixed culture of film-forming yeasts and lactobacilli and its effect on innate and adaptive immunity in mice[J]. J Biosci Bioeng, 2013, 116(6): 682-687. doi: 10.1016/j.jbiosc.2013.05.022
    [15]
    SAPUTRA F, SHIU Y, CHEN Y, et al. Dietary supplementation with xylanase-expressing B. amyloliquefaciens R8 improves growth performance and enhances immunity against Aeromonas hydrophila in Nile tilapia (Oreochromis niloticus)[J]. Fish Shellfish Immunol, 2016, 58: 397-405. doi: 10.1016/j.fsi.2016.09.046
    [16]
    ULLAH A, ZUBERI A, AHMAD M, et al. Dietary administration of the commercially available probiotics enhanced the survival, growth, and innate immune responses in Mori (Cirrhinus mrigala) in a natural earthen polyculture system[J]. Fish Shellfish Immunol, 2018, 72: 266-272. doi: 10.1016/j.fsi.2017.10.056
    [17]
    TAN H Y, CHEN S, HU S. Improvements in the growth performance, immunity, disease resistance, and gut microbiota by the probiotic Rummeliibacillus stabekisii in Nile tilapia (Oreochromis niloticus)[J]. Fish Shellfish Immunol, 2019, 92: 265-275. doi: 10.1016/j.fsi.2019.06.027
    [18]
    BRADFORD M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Anal Biochem, 1976, 72: 248-254. doi: 10.1016/0003-2697(76)90527-3
    [19]
    JIN Y, TIAN L, ZENG S, et al. Dietary lipid requirement on non-specific immune responses in juvenile grass carp (Ctenopharyngodon idella)[J]. Fish Shellfish Immunol, 2013, 34(5): 1202-1208. doi: 10.1016/j.fsi.2013.01.008
    [20]
    FOYSAO M J, ALAM M, KAWSER A Q M R, et al. Meta-omics technologies reveals beneficiary effects of Lactobacillus plantarum as dietary supplements on gut microbiota, immune response and disease resistance of Nile tilapia (Oreochromis niloticus)[J]. Aquaculture, 2020, 520: 734-749.
    [21]
    SEWAKA M, TRULLAS C, CHOTIKO A, et al. Efficacy of synbiotic Jerusalem artichoke and Lactobacillus rhamnosus GG-supplemented diets on growth performance, serum biochemical parameters, intestinal morphology, immune parameters and protection against Aeromonas veronii in juvenile red tilapia (Oreochromis spp.)[J]. Fish Shellfish Immunol, 2019, 86: 260-268. doi: 10.1016/j.fsi.2018.11.026
    [22]
    IWASHITA M K P, NAKANDAKARE I B, TERHUNE J S, et al. Dietary supplementation with Bacillus subtilis, Saccharomyces cerevisiae and Aspergillus oryzae enhance immunity and disease resistance against Aeromonas hydrophila and Streptococcus iniae infection in juvenile tilapia Oreochromis niloticus[J]. Fish Shellfish Immunol, 2015, 43(1): 60-66. doi: 10.1016/j.fsi.2014.12.008
    [23]
    CHEN H, LI J, YAN L, et al. Subchronic effects of dietary selenium yeast and selenite on growth performance and the immune and antioxidant systems in Nile tilapia Oreochromis niloticus[J]. Fish Shellfish Immunol, 2020, 97: 283-293. doi: 10.1016/j.fsi.2019.12.053
    [24]
    BROWN M R, BARRETT S M, VOLKMAN J K, et al. Biochemical composition of new yeasts and bacteria evaluated as food for bivalve aquaculture[J]. Aquaculture, 1996, 143(3/4): 341-360. doi: 10.1016/0044-8486(96)01286-0
    [25]
    TUKMECHI A, RAHMATI A H R, MANAFFAR R, et al. Dietary administration of beta-mercapto-ethanol treated Saccharomyces cerevisiae enhanced the growth, innate immune response and disease resistance of the rainbow trout, Oncorhynchus mykiss[J]. Fish Shellfish Immunol, 2011, 30(3): 923-928. doi: 10.1016/j.fsi.2011.01.016
    [26]
    LARA F M, OLVERA N M A, GUZMAN M B E, et al. Use of the bacteria Streptococcus faecium and Lactobacillus acidophilus, and the yeast Saccharomyces cerevisiae as growth promoters in Nile tilapia (Oreochromis niloticus)[J]. Aquaculture, 2003, 216: 193-201. doi: 10.1016/S0044-8486(02)00277-6
    [27]
    ABU E N M, YOUNIS N A, ABUBAKR H O, et al. Efficacy of dietary yeast cell wall supplementation on the nutrition and immune response of Nile tilapia[J]. Egypt J Aquatic Res, 2018, 44(4): 333-341. doi: 10.1016/j.ejar.2018.11.001
    [28]
    TOVAR R D, ZAMBONINO I J, CAHU C, et al. Influence of dietary live yeast on European sea bass (Dicentrarchus labrax) larval development[J]. Aquaculture, 2004, 234(1/2/3/4): 415-427.
    [29]
    TOVAR D, ZAMBONINO J, CAHU C, et al. Effect of live yeast incorporation in compound diet on digestive enzyme activity in sea bass (Dicentrarchus labrax) larvae[J]. Aquaculture, 2002, 204(1/2): 113-123.
    [30]
    BRATTGJERD S, EVENSEN O, LAUVE A. Effect of injected yeast glucan on the activity of macrophages in Atlantic salmon, Salmo salar L., as evaluated by in vitro hydrogen peroxide production and phagocytic capacity[J]. Immunology, 1994, 83(2): 288-294.
    [31]
    YUAN X, LIU W, LIANG C, et al. Effects of partial replacement of fish meal by yeast hydrolysate on complement system and stress resistance in juvenile Jian carp (Cyprinus carpio var. Jian)[J]. Fish Shellfish Immunol, 2017, 67: 312-321. doi: 10.1016/j.fsi.2017.06.028
    [32]
    BUTT R L, VOLKOFF H. Gut microbiota and energy homeostasis in fish[J]. Front Endocrinol, 2019, 10(9): 1-5.
    [33]
    XIA Y, CAO J, WANG M, et al. Effects of Lactococcus lactis subsp. lactis JCM5805 on colonization dynamics of gut microbiota and regulation of immunity in early ontogenetic stages of tilapia[J]. Fish Shellfish Immunol, 2019, 86: 53-63. doi: 10.1016/j.fsi.2018.11.022
    [34]
    FERGUSON R M W, MERRIFIELD D L, HARPER G M, et al. The effect of Pediococcus acidilactici on the gut microbiota and immune status of on-growing red tilapia (Oreochromis niloticus)[J]. J Appl Microbiol, 2010, 109(3): 851-862. doi: 10.1111/j.1365-2672.2010.04713.x
    [35]
    KUEBUTORNYE F K A, WANG Z, LU Y, et al. Effects of three host-associated Bacillus species on mucosal immunity and gut health of Nile tilapia, Oreochromis niloticus and its resistance against Aeromonas hydrophila infection[J]. Fish Shellfish Immunol, 2020, 97: 83-95. doi: 10.1016/j.fsi.2019.12.046
    [36]
    LIU W, WANG W, RAN C, et al. Effects of dietary scFOS and lactobacilli on survival, growth, and disease resistance of hybrid tilapia[J]. Aquaculture, 2017, 470: 50-55. doi: 10.1016/j.aquaculture.2016.12.013
    [37]
    ZHANG T, LI Q Q, CHENG L, et al. Akkermansia muciniphila is a promising probiotic[J]. Microb Biotechnol, 2019, 12(6): 11-13.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article views (538) PDF downloads(39) Cited by()
    Proportional views
    History
    • Received Date:  2020-12-17
    • Revised Date:  2021-03-16
    • Accepted Date:  2021-03-23
    • Available Online:  2021-04-12
    • Publish Date:  2021-09-30

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return