Effect of abrupt salinity change on morphology and structure of mitochldria-rich cells in Scatophagus argus
-
摘要: 文章采用显微技术研究了盐度骤降 (20盐度组投入5盐度组)、盐度骤升 (20盐度组投入35盐度组)胁迫下,金钱鱼 (Scatophagus argus) 幼鱼鳃线粒体丰富细胞 (Mitochldria-rich cells, MRCs) 形态结构的变化。结果显示,低盐胁迫3 h MRCs长径 [(9.517±1.390) μm]和短径 [(7.150±1.448) μm]较对照组长径 [(7.317±0.986) μm]和短径 [(5.067±0.467) μm]显著增大 (P<0.05),高盐胁迫6 h MRCs数量显著增加。显微结果表明,胁迫24 h鳃丝处于渗透调节的主动修复阶段;超微结构观察发现鳃丝分化出2种类型的MRCs:1) Ⅰ型MRCs,椭圆形,胞核形状不规则,内脊发达,顶端开口处于关闭或开放状态,主要存在于低盐环境;2) Ⅱ型MRCs,圆形,胞核规则呈圆形,具有多个顶端开口。具不同形状的线粒体,a型线粒体着色较浅,呈短粗状;b型线粒体着色较深,呈小的颗粒状,主要存在于高盐环境。综上所述,金钱鱼幼鱼对盐度骤变产生应答反应机制,通过MRCs体积、数量、形状结构,以及线粒体的形状结构变化共同维持内环境稳定。Abstract: The morphological changes of mitochldria rich cells (MRCS) in gills of juvenile goldfish (Scatophagus argus) were studied by microscopic technique under the stress of sudden salinity drop (20 salinity group input 5 salinity group) and salinity sudden rise (20 salinity group input 35 salinity group). The results show that the long and short diameters of MRCs were (9.517±1.390) μm and (7.150±1.448) μm, respectively, significantly higher than those of the control which were (7.317±0.986) μm and (7.317±0.986) μm (P<0.05), respectively; and the MRCs number increased significantly at 6th hour. Two types of MRCs were discovered: Type I MRCs, oval in shape with irregular nuclei, well-developed inner ridges and closed or open apical openings; Type II MRCs, round, with regular round nuclei and multiple apical openings. With different shapes of mitochondria, Type a mitochondria were slightly stained, showing short and thick shape; Type b mitochondria were more deeply stained, showing small granular. The results indicate that juvenile S. argus will produce a response mechanism through the changes of MRCs volume, quantity, shape and structure, as well as the shape and structure of mitochondria in order to maintain the stability of internal environment.
-
图 1 5盐度组胁迫金钱鱼鳃的显微结构图
a. 5盐度组3 h鳃丝整体图;b. 5盐度组3 h鳃丝部分放大图;c. 5盐度组6 h鳃丝部分放大图;d. 5盐度组12 h鳃丝部分放大图;e. 5盐度组24 h鳃丝部分放大图;f. 对照组 (20盐度) 鳃丝; g. 5盐度组96 h鳃丝部分放大图;MRCs. 线粒体丰富细胞;MC. 黏液细胞;BC. 血细胞;GL. 表示次级鳃小片直径;pl. 初级鳃小片;sl. 次级鳃小片;ecm. 在细胞外软骨质中;后图同此
Figure 1. Microscopic structure of S. argus gills at salinity of 5
a. Whole picture of gill filament at salinity of 5 and at 3rd hour; b. Enlarged view of gill filament at salinity of 5 and at 3rd hour ; c. Enlarged view of gill filament at salinity of 5 and at 6th hour; d. Enlarged view of gill filament at salinity of 5 and at 12th hour; e. Enlarged view of gill filament at salinity of 5 and at 24th hour; f. Gill filament at salinity of 20 (Control group); g. Enlarged view of gill filament at salinity of 5 and at 96th hour; MRCs. Mitochondrion-rich cells; MC. Mucus cell; BC. Blood cell; GL. Secondary gill lamella diameter; pl. Primary gill lamella; sl. Secondary gill lamella; ecm. In extracellular cartilaginous bone. The same below.
图 2 35盐度组胁迫金钱鱼鳃的显微结构图
a. 35盐度组3 h鳃丝部分放大图;b. 35盐度组6 h鳃丝部分放大图;c. 35盐度组12 h鳃丝部分放大图;d. 35盐度组24 h鳃丝部分放大图;e. 35盐度组96 h鳃丝部分放大图;f. 对照组 (20盐度) 鳃丝部分放大图
Figure 2. Microscopic structure of S. argus gills at salinity of 35
a. Enlarged view of gill filament at salinity of 35 and at 3rd hour; b. Enlarged view of gill filament at salinity of 35 and at 6th hour; c. Enlarged view of gill filament at salinity of 35 and at 12th hour; d. Enlarged view of gill filament at salinity of 35 and at 24th hour; e. Enlarged view of gill filament at salinity of 35 and at 96th hour; f. Control group, enlarged view of gill filament at salinity of 20
图 3 5盐度组胁迫对金钱鱼鳃超微结构的影响
a. 5盐度组3 h后鳃小片的超微结构; b. 5盐度组3 h后鳃的线粒体丰富细胞超微结构图,示Ⅰ型线粒体丰富细胞;c. 5盐度组6 h后鳃的线粒体丰富细胞超微结构图;d. 5盐度组12 h后鳃的线粒体丰富细胞超微结构图;e. 5盐度组24 h后鳃的线粒体丰富细胞超微结构图;f. 5盐度组48 h后鳃的线粒体丰富细胞超微结构图;g. 5盐度组96 h后鳃的线粒体丰富细胞超微结构图,示Ⅱ型线粒体丰富细胞结构;Ao. 顶端开口;Ap. 顶端小窝;MRCs. 线粒体丰富细胞;M. 线粒体;M1. a型线粒体;M2. b型线粒体;N. 细胞核;tn. 管网结构;lv. 光泡;JC. 紧密连接;N1. 形成色素的细胞核;h. 示a型线粒体;Ts. 微细小管系统
Figure 3. Effects of salinity 5 stress on ultrastructure of gill of S. argus
Ultrastructure structure of gill lamella at salinity of 5 and at 3rd hour; Ultrastructure structure of MRCs of gill lamella at salinity of 5 and at 3rd hour, showing Type I mitochondrionrich cells; c. Ultrastructure structure of MRCs of gill lamella at salinity of 5 and a 6th hour; d. Ultrastructure structure of MRCs of gill lamella at salinity of 5 and at 12th hour; e. Ultrastructure structure of MRCs of gill lamella at salinity of 5 and at 24th hour; f. Ultrastructure structure of MRCs of gill lamella at salinity of 5 and at 48th hour; g. Ultrastructure structure of MRCs of gill lamella at salinity of 5 and at 96th hour, showing Type II mitochondrion-rich cells; Ao. Apical opening; Ap. Apical crypt; MRCs. Mitochondrion-rich cells; M1. Type a Mitochondrion; M2. Type b mitochondrion; N. Nucleus; tn. Tubular network; lv. Light vesicles; JC. Junctional complex; N1. Chromogenic nucleus; h. Showing Type a mitochondrion; Ts. Microtubule system; the same below
图 4 35盐度组盐度骤降胁迫对金钱鱼幼鱼鳃超微结构的影响
a. 35盐度组3 h后鳃的线粒体丰富细胞超微结构图;b. 35盐度组3 h后鳃的线粒体丰富细胞超微结构图放大图;c. 35盐度组6 h后鳃的线粒体丰富细胞超微结构图;d. 35盐度组12 h后鳃的线粒体丰富细胞超微结构图;e. 35盐度组24 h后鳃的线粒体丰富细胞超微结构图;f. 35盐度组48 h后鳃的线粒体丰富细胞超微结构图;g. 35盐度组96 h后鳃的线粒体丰富细胞超微结构图;h. 对照组 (20盐度) 鳃超微结构图;i. 对照组 (20盐度) 鳃超微结构整体图;Ao. 顶端开口;Ap. 顶端小窝,MRCs. 线粒体丰富细胞;M1. a型线粒体;M2. b型线粒体;N. 细胞核;JC. 紧密连接;Mc. 微绒毛;mr. 微脊结构;PBS. 珠泡结构;Ts. 微细小管系统
Figure 4. Effects of salinity 35 stress on ultrastructure of gill of S. argus
Ultrastructure structure of gill lamella at salinity of 35 and at 3rd hour; Enlarged view of ultrastructure structure of MRCs of gill lamella at salinity of 35 and at 3rd hour; c. Ultrastructure structure of MRCs of gill lamella at salinity of 35 and a 6th hour; d. Ultrastructure structure of MRCs of gill lamella at salinity of 35 and at 12th hour; e. Ultrastructure structure of MRCs of gill lamella at salinity of 35 and at 24th hour; f. Ultrastructure structure of MRCs of gill lamella at salinity of 35 and at 48th hour; g. Ultrastructure structure of MRCs of gill lamella at salinity of 35 and at 96th hour; h. Control group, Ultrastructure structure of gill lamella at salinity of 20
表 1 不同盐度下金钱鱼鳃线粒体丰富细胞长径、短径变化
Table 1. Changes of long and short diameters of MRCs in S. argus gill under different salinities
时间
t/h长径 length diameter/μm 短径 short diameter/μm 20 (对照组)
20 (Control group)5盐度组
5 salinity group35盐度组
35 salinity group20 (对照组)
20 (Control group)5盐度组
5 salinity group35盐度组
35 salinity group3 7.317±0.986b 9.517±1.390c 6.933±0.831b 5.067±0.467b 7.150±1.448c 4.367±0.344ab 6 8.033±0.873b 7.400±1.0.17b 4.783±1.020b 5.133±0.880b 12 6.333±1.336b 6.267±0.723a 4.750±0.747b 3.850±0.638a 24 6.567±0.582a 7.967±0.647b 4.433±0.723a 5.133±0.859b 48 5.933±1.96a 6.917±1.187ab 4.017±0.360a 4.650±0.766ab 96 7.650±0.403a 7.167±0.508ab 5.333±0.582a 5.967±0.588c 注:不同表格同一列之间参数后面有一个字母相同则无显著差异 (Duncan's法,P>0.05),反之,则差异显著 (P<0.05);后表同此 Note: There was no significant difference between different tables with the same letter after the same column (Duncan's, P>0.05). On the contrary, the difference is significant (P<0.05). The same case in the following tables. 表 2 不同盐度下金钱鱼次级鳃小片直径的变化
Table 2. Changes in diameter of secondary gill lamella of of S. argus under different salinity
时间
t/h20 (对照组)
20 (Control group)5盐度组
5 salinity group35盐度组
35 salinity group3 10.567±1.217b 12.783±1.603c 21.333±2.510c 6 8.317±1.312a 10.750±2.157b 12 8.933±2.554ab 6.050±0.967a 24 7.867±0.512a 8.867±0.950b 48 8.383±1.147a 10.667±1.922b 96 7.950±2.000a 10.717±0.682b -
[1] 王刚, 李加儿, 区又君, 等. 温度、盐度、pH对卵形鲳鲹幼鱼离体鳃组织耗氧量的影响[J]. 南方水产科学, 2011, 7(5): 37-42. doi: 10.3969/j.issn.2095-0780.2011.05.006 [2] 强俊, 王辉, 李瑞伟, 等. 盐度对奥尼罗非鱼仔、稚鱼生长、存活及其消化酶活力的影响[J]. 南方水产, 2009, 5(5): 8-14. [3] BRADFORD Y, CONLIN T, DUNN N, et al. Enhancements and updates to the Zebrafish Model Organism Database[J]. Nucleic Acids Res, 2011, 39: 822-829. doi: 10.1093/nar/gkq1077 [4] KANEKO T, WATANABE S, LEE K M. Functional morphology of mitochondrion-rich cells in euryhaline and stenohaline teleosts[J]. Aqua-BioScience Monographs, 2008, 1(1): 1-62. [5] WANG H P, LEE T. New insights into fish ion regulation and mitochondrion-rich cells[J]. Comp Biochem Physiol A, 2007, 148(3): 479-497. doi: 10.1016/j.cbpa.2007.06.416 [6] WATSON C J, NORDI W M, ESBAUGH A J. Osmoregulation and branchial plasticity after acute freshwater transfer in red drum, Sciaenops ocellatus[J]. Comp Biochem Physiol A, 2014, 178: 82-89. [7] 兰国宝, 阎冰, 廖思明, 等. 金钱鱼生物学研究及回顾[J]. 水产科学, 2005, 24(7): 39-41. doi: 10.3969/j.issn.1003-1111.2005.07.013 [8] 王妹, 邓思平, 陈华谱, 等. 金钱鱼 Amhr2基因的克隆及表达分析[J]. 广东海洋大学学报, 2018, 38(3): 17-24. doi: 10.3969/j.issn.1673-9159.2018.03.003 [9] 梁雪梅. 催乳素在金钱鱼盐度适应过程中的机理研究[D]. 上海: 上海海洋大学, 2018: 31-59. [10] 仲勇. 盐度影响金钱鱼生长及渗透相关基因的表达[D]. 上海: 上海海洋大学, 2019: 31-59. [11] 刘永士, 徐嘉波, 施永海, 等. 盐度对金钱鱼幼鱼消化酶和抗氧化酶活性的影响[J]. 水产科技情报, 2020, 47(4): 181-185. [12] 林浩然. 鱼类生理学[M]. 广州: 中山大学出版社. 2011: 205-221. [13] 区又君, 李加儿, 谢菁, 等. 鲻早期发育阶段鳃的超微结构及其呼吸表面积的研究[J]. 南方水产科学, 2014, 10(4): 52-57. doi: 10.3969/j.issn.2095-0780.2014.04.009 [14] 李霞. 水产动物组织胚胎学[M]. 北京: 中国农业出版社, 2005: 118-121. [15] SINHA A K, MATEY V, GIBLEN T, et al. Gill remodeling in three freshwater teleosts in response to high environmental ammonia[J]. Aquat Toxicol, 2014, 155: 166-180. doi: 10.1016/j.aquatox.2014.06.018 [16] 区又君, 林先智, 李加儿, 等. 遮目鱼幼鱼鳃线粒体丰富细胞的形态结构及其在不同盐度下的变化[J]. 中国细胞生物学学报, 2014, 36(12): 1622-1629. [17] 宋郁. 金钱鱼渗透压调节机理及其它相关研究[D]. 上海: 上海海洋大学. 2012: 17-18. [18] 吴勇, 施钢, 谢又兴, 等. 急性盐度胁迫对细鳞鱼刺幼鱼存活及摄饵的影响[J]. 渔业研究, 2020, 42(4): 348-355. [19] 王信海, 蔺玉华, 姜秋俚, 等. 盐度对咸海卡拉白鱼生长及组织学特征的影响[J]. 中国水产科学, 2008, 15(5): 808-815. doi: 10.3321/j.issn:1005-8737.2008.05.013 [20] 党云飞, 徐伟, 耿龙武, 等. NaCl盐度和NaHCO3碱度对大鳞鲃幼鱼生长及鳃组织特征的影响[J]. 中国水产科学, 2013, 20(3): 577-584. [21] IURI S A, ANNIA A B, INDIANARA F B, et al. Salinity influence on growth, osmoregulation and energy turnover in juvenile pompano Trachinotus marginatus Cuvier 1832[J]. Aquaculture, 2016, 455: 63-72. doi: 10.1016/j.aquaculture.2016.01.010 [22] 李佳佳. 暗纹东方鲀早期发育阶段渗透压调节能力的研究[D]. 南京: 南京师范大学, 2008: 41-49. [23] 吴贝贝. 长江口中华鲟幼鱼鳃氯细胞的形态结构及盐度适应性变化[D]. 上海: 上海海洋大学, 2014: 26-29. [24] KANG C K, YANG W K, LIN S T, et al. The acute and regulatory phases of time-course changes in gill mitochondrion-rich cells of seawater-acclimated medaka (Oryzias dancena) when exposed to hypoosmotic environments[J]. Comp Biochem Physiol A, 2013, 164(1): 181-191. doi: 10.1016/j.cbpa.2012.08.010 [25] SEO M Y, MEKUCHI M, TERANISHI K, et al. Expression of ion transporters in gill mitochondrion-rich cells in Japanese eel acclimated to a wide range of environmental salinity[J]. Comp Biochem Physiol A, 2013, 166(2): 323-332. doi: 10.1016/j.cbpa.2013.07.004 [26] INOKUCHI M, HIROI J, WATANABE S, et al. Gene expression and morphological localization of NHE3, NCC and NKCC1a in branchial mitochondria-rich cells of Mozambique tilapia (Oreochromis mossambicus) acclimated to a wide range of salinities[J]. Comp Biochem Physiol A, 2008, 151(2): 151-158. doi: 10.1016/j.cbpa.2008.06.012 [27] CHIO J H, LEE K M, INOKUCHI M, et al. Morphofunctional modifications in gill mitochondria-rich cells of Mozambique tilapia transferred from freshwater to 70% seawater, detected by dual observations of whole-mount immunocytochemistry and scanning electron microscopy[J]. Comp Biochem Physiol A, 2011, 158(1): 132-142. doi: 10.1016/j.cbpa.2010.09.019 [28] 王雯, 温久福, 区又君, 等. 急性淡水胁迫对斜带石斑鱼幼鱼鳃线粒体丰富细胞形态结构的影响[J]. 应用海洋学学报, 2016, 35(4): 546-549. [29] 魏渲辉, 汝少国, 徐路, 等. 海水和淡水适应过程中广盐性鱼类鳃氯细胞的形态与功能变化及其激素调节[J]. 海洋科学, 2001, 25(4): 16-20. doi: 10.3969/j.issn.1000-3096.2001.04.006 [30] 温久福, 蓝军南, 曹明, 等. 盐度对花鲈幼鱼花鲈幼鱼鳃、脾及肌肉组织结构的影响[J]. 渔业科学进展, 2020, 41(1): 112-118. -
计量
- 文章访问数: 17
- 被引次数: 0