Study on distribution of sediment carbon and nitrogen in mangrove wetland of Qi'ao Island, Pearl River Estuary
-
摘要: 为了对珠江口红树林湿地沉积物有机质有更为全面、深入的认识,以珠江口淇澳岛红树林湿地为对象,对其沉积物有机碳 (TOC) 和总氮 (TN) 的含量分布、储量及来源进行了研究。结果表明,淇澳岛7种主要红树 [ 秋茄 (Kandelia candel)、无瓣海桑 (Sonneratia opetala)、桐花 (Aegiceras corniculatum)、木榄 (Bruguiera gymnorhiza)、卤蕨 (Acrostichum aureum)、老鼠簕 (Acanthus ilicifolius)、海漆 (Excoecaria agallocha)] 群落表层沉积物TOC质量分数介于1.125%~1.969%,TN质量分数介于0.058%~0.136%。其中秋茄林内TOC含量最高,无瓣海桑林缘TOC含量最高,而木榄林内、林缘TOC含量均最低,且各红树群落TOC含量均呈林内大于林缘的特征。表层沉积物碳氮比 (C/N) 为12.032~26.690,显示出高等植物对其有机质组成具有较高的贡献率,其中植被内源有机碳的平均贡献率约为70.21%。受土地利用变化等因素的影响,0~30 cm层沉积物的TOC和TN含量均呈现出波动变化的趋势。0~30 cm层沉积物有机碳储量 (SOC) 介于56.83~69.54 t·hm−2,显示出淇澳岛红树林湿地较强的有机碳埋藏能力。Abstract: In order to have a deep and thorough understanding of sediment organic matter in mangrove wetland of the Pearl River Estuary, we analyzed the distribution, stocks and source of soil organic carbon (TOC) and total nitrogen (TN) of the mangrove wetland in Qi'ao Island. The results show that the TOC content in the surficial sediment of seven main mangrove communities (Kandelia candel, Sonneratia opetala, Aegiceras corniculatum, Bruguiera gymnorhiza, Acrostichum aureum, Acanthus ilicifolius, Excoecaria agallocha) was 1.125%−1.969%, and the TN content was 0.058%−0.136%. Among the seven main mangrove communities, K. candel had the highest TOC content of inner forest, while S. opetala had the highest TOC content of forest edge. The lowest TOC contents of inner and edge both appeared in B. gymnorhiza communities. Moreover, the TOC content of inner forest was always higher than that of edge. The C/N of the surficial sediment was 12.032−26.690, showing that higher plants have a higher contribution rate to its organic matter composition. According to the C/N bivariate mixture model, about 70.21% of TOC input came from endogenous input of vegetation. Affected by factors such as land use change, TOC and TN content fluctuated in 0−30 cm soil layer. The storage of organic carbon (SOC) was 56.83−69.54 t·hm−2, showing the strong TOC storage ability of this mangrove wetland in Qi'ao Island.
-
Key words:
- Mangrove forest /
- Sediment /
- Storage of TOC and TN /
- Qi'ao Island
-
表 1 淇澳岛红树林湿表层沉积物理化性质
Table 1. Physical and chemical properties of surface sediment in mangrove wetland of Qi'ao Island
红树种类
Mangrove species含水率
Moisture content/%容重
Bulkdensity/(g·cm−3)秋茄 K. candel 64.14±1.8 1.24±0.089 老鼠簕 A. ilicifolius 70.39±2.2 1.26±0.046 无瓣海桑 S. opetala 69.94±6.8 1.23±0.130 桐花 A. corniculatum 75.21±12.9 1.13±0.184 卤蕨 A. aureum 70.76±1.6 1.26±0.046 海漆 E. agallocha 65.97±5.4 1.13±0.097 表 2 淇澳岛红树林湿地垂直分层沉积物理化性质
Table 2. Physical and chemical properties of sediment core in mangrove wetland of Qi'ao Island
柱状样
Sediment core/cm含水率
Moisture content/%容重
Bulkdensity/(g·cm−3)0~3 64.43±4.6 1.34±0.067 3~6 64.73±6.9 1.30±0.065 6~9 63.65±8.9 1.25±0.077 9~12 66.40±4.4 1.26±0.055 12~15 63.93±12.6 1.27±0.124 15~18 62.76±14.0 1.27±0.147 18~21 67.08±2.3 1.25±0.080 21~24 68.35±6.2 1.23±0.169 24~27 73.89±1.3 1.17±0.121 27~30 68.90±9.6 1.27±0.129 表 3 不同区域湿地沉积物中有机质含量对比
Table 3. Comparison of organic matter in wetland sediments in different regions
研究区域
Survey area有机碳质量分数
TOC/%总氮质量分数
TN/(mg·g−1)数据来源
Data source淇澳岛红树林湿地 Mangrove wetland in Qi'ao Island 0.92~2.26 0.60~1.43 本研究 深圳福田红树林湿地 Futian Mangrove wetland of Shenzhen 约1.42 1.40~1.60 [2] 广西珍珠湾红树林湿地 Mangrove wetland in Zhenzhu Gulf, Guangxi 1.43~2.21 0.62~1.03 [24] 九龙江口红树林湿地 Mangrove wetland in Jiulong River Estuary 1.24~3.81 1.19~2.05 [26] 法国Albert湖泊 Lake Albert, French 4.33~5.31 − [32] 巴西南部红树林湿地 Mangrove wetland, South Brazil 2.7~6.1 − [32] 美国Massachusetts湿地 Massachusetts wetland in America 5.6~36.7 0.80~1.80 [33] 长江口湿地 Yangtze River Estuary 0.1~0.7 0.14~0.78 [34] 苏北潮滩湿地 Tidal flat in northern Jiangsu Province 0.16~0.9 0.19~2.68 [34] 漳江口红树林湿地 Mangrove wetland in Zhangjiang Estuary 0.91~2.86 0.25~2.21 [35] 法国Guiana红树林湿地 Guiana mangrove wetland, French 0.70~1.90 0.10~1.30 [36] 荷兰西谢尔德河口 Westerschelde Estuary 1.19~2.33 0.8~0.15 [37] 广西大冠沙红树林湿地 Daguansha mangrove wetland, Guangxi 2.26±1.84 0.45±0.34 [38] -
[1] 刘逸泠, 覃盈盈, 郑海雷. 红树植物耐水淹和高盐适应性研究进展[J]. 厦门大学学报 (自然科学版), 2017, 56(3): 314-322. [2] 乔永民, 谭键滨, 马舒欣, 等. 深圳红树林湿地沉积物氮磷分布与来源分析[J]. 环境科学与技术, 2018, 41(2): 34-40. [3] MANSON F J, LONERAGAN N R, SKILLETER G A, et al. An evaluation of the evidence for linkages between mangroves and fisheries: a synthesis of the literature and identification of research directions[J]. Oceanogr Mar Biol, 2005, 43: 483-513. [4] 李亚芳, 杜飞雁, 王亮根, 等. 基于生物性状分析方法的不同恢复阶段无瓣海桑人工林湿地大型底栖动物生态功能研究[J]. 南方水产科学, 2018, 14(3): 10-18. doi: 10.3969/j.issn.2095-0780.2018.03.002 [5] MCLEOD E, CHMURA G L, BOUILLON S, et al. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2[J]. Front Ecol Environ, 2011, 9(10): 552-560. doi: 10.1890/110004 [6] HOPKINSON C S, CAI W J, HU X. Carbon sequestration in wetland dominated coastal systems: a global sink of rapidly diminishing magnitude[J]. Curr Opin Env Sust, 2012, 4(2): 186-194. doi: 10.1016/j.cosust.2012.03.005 [7] ALONGI D M. Carbon cycling and storage in mangrove forests[J]. Annu Rev Mar Sci, 2014, 6(1): 195-219. doi: 10.1146/annurev-marine-010213-135020 [8] BOUILLON S, CONNOLLY R M, LEE S Y. Organic matter exchange and cycling in mangrove ecosystems: recent insights from stable isotope studies[J]. J Sea Res, 2008, 59(1/2): 44-58. [9] ALONGI D M. Carbon sequestration in mangrove forests[J]. Carbon Manag, 2012, 3(3): 313-322. doi: 10.4155/cmt.12.20 [10] LIU H, REN H, HUI D, et al. Carbon stocks and potential carbon storage in the mangrove forests of China[J]. J Environ Manag, 2014, 133: 86-93. doi: 10.1016/j.jenvman.2013.11.037 [11] MURDIYARSO D. Carbon storage in mangrove and peatland ecosystems: a preliminary account from plots in Indonesia[J]. Ecol Appl, 2010, 14(4): 232-246. [12] 徐慧鹏, 刘涛, 张建兵. 红树林碳埋藏过程对海平面上升、气候变化和人类活动的响应[J]. 广西科学, 2020, 27(1): 84-90. [13] DUKE N C, MEYNECKE O J, DITTMANN S, et al. A world without mangroves?[J]. Science, 2007, 317: 41. [14] POLIDORO B A, CARPENTER K E, DUCKE N C, et al. The loss of species: mangrove extinction risk and geographic areas of global concern[J]. PLoS One, 2010, 5(4): e10095. doi: 10.1371/journal.pone.0010095 [15] ALONGI D M. Present state and future of the world's mangrove forests[J]. Environ Conserv, 2002, 29(3): 331-349. doi: 10.1017/S0376892902000231 [16] 何克军, 林寿明, 林中大. 广东红树林资源调查及其分析[J]. 广东林业科技, 2006(2): 89-93. [17] DONATO D C, KAUFFMAN J B, MURDIYARSO D, et al. Mangroves among the most carbon-rich forests in the tropics[J]. Nat Geosci, 2011, 4(5): 293-297. doi: 10.1038/ngeo1123 [18] SAENGER P, SIDDIQI N A. Land from the sea: the mangrove afforestation program of Bangladesh[J]. Ocean Coast Manag, 1993, 20: 23-29. doi: 10.1016/0964-5691(93)90011-M [19] BROCKMEYER R, REY J R, VIRNSTEIN R W, et al. Rehabilitation of impounded estuarine wetlands by hydrologic reconnection to the Indian River Lagoon, Florida (USA)[J]. Wetl Ecol Manag, 1996, 4(2): 93-109. doi: 10.1007/BF01876231 [20] MILANO G R. Restoration of coastal wetlands in southeastern Florida[J]. Wetl J, 1999, 11(2): 15-24. [21] LEWIS R R. Ecologically based goal setting in mangrove forest and tidalmarsh restoration in Florida[J]. Ecol Eng, 2000, 15(3/4): 191-198. [22] 叶翔, 李靖, 王爱军. 珠江口淇澳岛滨海湿地沉积环境演化及其对人类活动的响应[J]. 海洋学报, 2018, 40(7): 79-89. [23] 王震, 陈卫军, 管伟, 等. 珠海市淇澳岛主要红树林群落特征研究[J]. 中南林业科技大学学报, 2017, 37(4): 86-91. [24] 陶玉华, 黄星, 王薛平, 等. 广西珍珠湾三种红树林林分土壤碳氮储量的研究[J]. 广西植物, 2020, 40(3): 285-292. doi: 10.11931/guihaia.gxzw201909003 [25] QIAN J L, WANG S M, XUE B, et al. A method of quantitatively calculating amount of allochthonous organic carbon in lake sediments[J]. Chin Sci Bull, 1997, 42(21): 1821-1823. doi: 10.1007/BF02882652 [26] 于宇, 李学刚, 袁华茂. 九龙江口红树林湿地沉积物中有机碳和氮的分布特征及来源辨析[J]. 广西科学院学报, 2017, 33(2): 75-81, 86. [27] TALBOT M R. A review of the palaeohydrological interpretation of carbon and oxygen isotopic ratios in primary lacustrine carbonates[J]. Chem Geol, 1990, 80(4): 261-279. [28] 莫莉萍, 周慧杰, 刘云东, 等. 广西红树林湿地土壤有机碳储量估算[J]. 安徽农业科学, 2015(15): 91-94. [29] 刘世荣, 王晖, 栾军伟. 中国森林土壤碳储量与土壤碳过程研究进展[J]. 生态学报, 2011, 31(19): 5437-5448. [30] YANG Y S, GUO J F, CHEN G H, et al. Effects of forest conversion on soil labile organic carbon fractions and aggregate stability in subtropical China[J]. Plant Soil, 2009, 323(1/2): 153-162. [31] 胡懿凯. 淇澳岛不同恢复类型红树林碳密度和固碳速率比较研究[D]. 长沙: 中南林业科技大学, 2019: 46. [32] WHITE J S, BAYLEY S E, CURTIS P J. Sediment storage of phosphorus in a northern prairie wetland receiving municipal and agro-industrial wastewater[J]. Ecol Eng, 2000, 14: 127-138. [33] ZHOU J, WU Y, KANG Q, et al. Spatial variations of carbon, nitrogen, phosphorous and sulfur in the salt marsh sediments of the Yangtze Estuary in China[J]. Estuar Coasta Shelf S, 2007, 71(1/2): 47-59. [34] 高建华, 欧维新, 杨桂山. 潮滩湿地N、P生物地球化学过程研究[J]. 湿地科学, 2004(3): 220-227. doi: 10.3969/j.issn.1672-5948.2004.03.010 [35] 薛博. 漳江口红树林湿地沉积物有机质来源追溯[D]. 厦门: 厦门大学, 2007: 51. [36] MARHANDA C, LALLIER-VERGÈS E, BALTZER F. The composition of sedimentary organic matter in relation to the dynamic features of a mangrove-fringed coast in French Guiana[J]. Estuar Coast Shelf S, 2003, 56(1): 119-130. doi: 10.1016/S0272-7714(02)00134-8 [37] MIDDELBURG J J, NIEUWENHUIZE J, LUBBERTS R K, et al. Organic carbon isotope systematics of coastal marshes[J]. Estuar Coast Shelf S, 1997, 45(5): 681-687. doi: 10.1006/ecss.1997.0247 [38] 袁彦婷, 丁振华, 张玲, 等. 土地利用方式改变对红树林沉积物中营养元素含量的影响[J]. 地球与环境, 2012, 40(3): 385-390. [39] THORNTON S F, MCMANUS J. Application of organic carbon and nitrogen stable isotope and C/N ratios as source Indicators of organic matter provenance in estuarine systems: evidence from the Tay Estuary, Scotland[J]. Estuar Coast Shelf S, 1994, 38(3): 219-233. doi: 10.1006/ecss.1994.1015 [40] 张金波, 宋长春. 土地利用方式对土壤碳库影响的敏感性评价指标[J]. 生态环境, 2003(4): 500-504. [41] 张金波, 宋长春, 杨文燕. 三江平原沼泽湿地开垦对表土有机碳组分的影响[J]. 土壤学报, 2005(5): 155-157. [42] HANKE A, CERLI C, MUHR J, et al. Redox control on carbon mineralization and dissolved organic matter along a chronosequence of paddy soils[J]. Eur J S Sci, 2013, 64(4): 476-487. doi: 10.1111/ejss.12042 [43] 马姣娇, 牛安逸, 徐颂军, 等. 基于地学信息图谱的珠海淇澳岛土地利用格局分析[J]. 华南师范大学学报(自然科学版), 2018, 50(2): 77-85. [44] 陈志杰, 韩士杰, 张军辉. 土地利用变化对漳江口红树林土壤有机碳组分的影响[J]. 生态学杂志, 2016, 35(9): 2379-2385. -