Analysis of feeding habits of cultured jellyfish (Rhopilema esculentum) in Tongzhou Bay based on fatty acid and stable carbon and nitrogen isotopic analysis
-
摘要: 海蜇 (Rhopilema esculentum) 是大型浮游动物,在海洋生态系统能量流动环节中起重要作用。文章采用脂肪酸生物标记法和碳、氮稳定同位素技术研究了通州湾养殖水域海蜇的食性及营养级。结果显示,对通州湾养殖水域海蜇共检测出29种脂肪酸,其中饱和脂肪酸 (Saturated fatty acid, SFA) 10种,单不饱和脂肪酸 (Monounsaturated fatty acids, MUFA) 8种,多不饱和脂肪酸 (Polyunsaturated fatty acids, PUFA) 11种。基于特征脂肪酸的食性分析,硅藻、陆源植物、植食性桡足类以及底栖生物是通州湾养殖水域海蜇的主要食物来源,海蜇对浮游细菌也存在摄食,具有杂食性。海蜇的二十二碳六烯酸 (DHA) 与二十碳五烯酸 (EPA) 的比值为0.78<1,这说明海蜇的营养级较低。海蜇的碳稳定同位素 (δ13C) 介于−23.54‰~−20.75‰,平均值为 (−22.26±0.66)‰;氮稳定同位素 (δ15N) 介于8.39‰~9.85‰,平均值为 (9.02±0.29)‰。经检验发现,海蜇伞径长与δ13C和δ15N的相关性并不显著 (P>0.05),说明随着成体海蜇的生长,其营养级未发生明显变化。Abstract: Jellyfish (Rhopilema esculentum), as a large zooplankton, plays an essential role in the energy flow of marine ecosystems. In this study, we applied the fatty acid biomarker method and carbon and nitrogen stable isotope technique to investigate the diet and trophic level of cultured jellyfish in Tongzhou Bay. The results show that there were 29 kinds of fatty acids in jellyfish, including 10 kinds of saturated fatty acids (SFA), 8 kinds of monounsaturated fatty acids (MUFA) and 11 kinds of polyunsaturated fatty acids (PUFA). The specific fatty acid analysis reveals that diatoms, terrestrial plants, herbivorous copepods and benthos dominated in the diet of cultured jellyfish in Tongzhou Bay, followed by planktonic bacteria. Besides, the DHA/EPA value was 0.78<1, which indicates that jellyfish had a lower trophic level. The δ13C value ranged from −23.54‰ to −20.75‰, with an average value of (−22.26±0.66)‰.The range of δ15N was 8.39‰−9.85‰ with an average value of (9.02±0.29)‰. No significant correlation is detected between the diameter of jellyfish and δ13C and δ15N (P>0.05), showing that there is no significant change in the trophic level along with the growth of adult jellyfish.
-
表 1 海蜇的脂肪酸组成
Table 1. Fatty acids compositions of R. esculentum
脂肪酸
Fatty acid平均值
Mean/%标准差
Standard
deviation/
%样本数
Sample
size十四酸 C14:0 10.97 4.49 32 十五酸 C15:0 5.90 1.53 32 十六酸 C16:0 101.34 47.35 32 十七酸 C17:0 9.47 2.64 32 十八酸 C18:0 84.46 30.23 32 二十酸 C20:0 5.38 1.13 32 二十一酸 C21:0 3.05 0.16 32 二十二酸 C22:0 4.14 0.16 32 二十三酸 C23:0 3.49 0.14 32 二十四酸 C24:0 3.85 0.17 32 十五碳一烯酸 C15:1 n-5 2.94 0.22 32 十六碳一烯酸 C16:1 n-7 6.29 2.24 32 十七碳一烯酸 C17:1 n-7 3.97 0.89 32 十八碳一烯酸 C18:1 n-9t 3.36 0.38 32 十八碳一烯酸 C18:1 n-9c 12.24 5.52 32 二十碳一烯酸 C20:1 3.56 1.01 32 二十二碳一烯酸 C22:1 n-9 2.19 0.50 32 二十四碳一烯酸 C24:1 n-9 7.78 2.17 32 十八碳二烯酸 C18:2 n-6t 5.56 2.70 32 十八碳二烯酸 C18:2 n-6c 11.21 4.93 32 十八碳三烯酸 C18:3 n-6 3.08 0.34 32 十八碳三烯酸 C18:3 n-3 18.17 1.16 32 二十碳二烯酸 C20:2 3.95 0.21 32 二十碳三烯酸 C20:3 n-6 3.25 0.22 32 二十碳三烯酸 C20:3 n-3 23.82 2.45 32 花生四烯酸 C20:4 n-6 31.51 5.56 32 二十二碳二烯酸 C22:2 n-6 27.64 4.64 32 二十碳五烯酸 C20:5 n-3 (EPA) 70.20 11.70 32 二十二碳六烯酸 C22:6 n-3 (DHA) 54.92 9.39 32 饱和脂肪酸 SFA 232.05 13.23 32 单不饱和脂肪酸 MUFA 42.33 4.49 32 多不饱和脂肪酸 PUFA 253.31 16.16 32 三烯酸 n-3 (Trienoic acid) 167.11 2.16 32 六烯酸 n-6 (Alkene acid) 82.25 5.26 32 表 2 海蜇碳、氮稳定同位素比值和碳、氮含量比值
Table 2. Ratio of stable isotope and content of carbon and nitrogen in R. esculentum
伞径
Diameter/mm碳稳定同位素
δ13C/‰氮稳定同位素
δ15N/‰碳氮比
C/N190 −21.67±0.04 9.28±0.26 3.55±0.16 250 −21.45±0.03 9.16±0.17 3.48±0.11 270 −22.61±0.31 8.39±0.03 3.67±0.09 280 −22.66±0.39 8.74±0.11 3.67±0.23 280 −22.15±0.30 8.8±0.21 3.68±0.16 290 −22.37±0.26 9.25±0.05 3.51±0.24 290 −22.13±0.22 8.79±0.01 3.54±0.09 310 −20.75±0.16 9.03±0.17 3.37±0.13 310 −21.90±0.28 9.1±0.09 3.56±0.11 310 −22.42±0.33 8.84±0 3.62±0.16 310 −22.42±0.12 9.36±0.22 3.63±0.03 320 −22.94±0.31 8.74±0.16 3.67±0.06 320 −22.47±0.26 9.85±0.17 3.71±0.03 320 −22.73±0.37 8.97±0.13 3.76±0.11 320 −23.11±0.09 9.31±0.12 3.79±0.21 340 −21.77±0.56 8.89±0.13 3.49±0.04 340 −23.11±0.19 8.72±0.06 3.84±0.08 350 −21.63±0.61 9.27±0.09 3.47±0.11 350 −22.79±0.27 9.07±0.21 3.7±0.16 360 −21.47±0.19 9.04±0.01 3.46±0.06 360 −23.48±0.45 8.95±0.06 3.86±0.06 370 −21.69±0.55 9.01±0.06 3.4±0.04 370 −21.86±0.41 9.15±0.03 3.47±0.12 370 −22.13±0.23 8.59±0.16 3.5±0.31 370 −23.54±0.34 9.29±0.14 3.94±0.29 380 −21.67±0.19 9.48±0.18 3.43±0.34 400 −21.87±0.55 8.9±0.06 3.55±0.18 400 −22.60±0.58 8.89±0.03 3.63±0.06 400 −22.80±0.31 8.84±0.05 3.74±0.04 430 −21.61±0.29 8.87±0.14 3.37±0.17 -
[1] 刘顶海, 张继红, 陈四清, 等. 海蜇浮游幼体形态特征和生长规律的研究[J]. 渔业科学进展, 2011, 32(3): 51-56. doi: 10.3969/j.issn.1000-7075.2011.03.008 [2] 梁爽. 不同处理方式对海蜇即食产品品质影响的研究[D]. 大连: 大连工业大学, 2015: 10-15. [3] 刘玉明, 何颖, 沈先荣. 海蜇化学成分及其药理活性研究进展[J]. 中国海洋药物, 2017, 36(5): 93-98. [4] 郑永军, 杜国丰, 刘辰锶, 等. 海蜇胶原蛋白保湿霜的研制[J]. 山东化工, 2017, 46(24): 15-18. doi: 10.3969/j.issn.1008-021X.2017.24.006 [5] 刘顶海. 海蜇 (Rhopilema Esculenta) 幼体发育、苗种培育及生长规律的研究[D]. 上海: 上海海洋大学, 2011: 35. [6] 李云峰, 李玉龙, 周遵春, 等. 我国北方地区海蜇池塘养殖技术研究进展[J]. 水产科学, 2020, 39(2): 286-291. [7] 张敏, 陆德祥. 南通地区海蜇养殖技术[J]. 河北渔业, 2015(12): 44-47. doi: 10.3969/j.issn.1004-6755.2015.12.015 [8] ATKINSON A, SNŸDER R. Krill-copepod interactions at South Georgia, Antarctica. I. Omnivory by Euphausia superba[J]. Mar Ecol Prog Ser, 1997, 160: 63-76. [9] PERISSINOTTO R, PAKHOMOV E, MCQUAID C, et al. In situ grazing rates and daily ration of antarctic krill Euphausia superba feeding on phytoplankton at the antarctic polar front and the marginal ice zone[J]. Mar Ecol Prog Ser, 1997, 160: 77-91. [10] 金鑫. 黄东海浮游食物网的初步研究[D]. 青岛: 中国科学院研究生院(海洋研究所), 2011: 13-25. [11] 崔莹. 基于稳定同位素和脂肪酸组成的中国近海生态系统物质流动研究[D]. 上海: 华东师范大学, 2012: 17-26. [12] 李志刚. 海蜇、对虾和缢蛏池塘立体生态养殖技术要点[J]. 河北渔业, 2019(9): 25-26. [13] 王摆, 田甲申, 董颖, 等. 海蜇−对虾−缢蛏−牙鲆综合养殖池塘的食物网分析[J]. 水产科学, 2019, 38(3): 327-332. [14] 王国善, 于志刚, 米铁柱, 等. 环境因子对海蜇生长发育影响的研究进展[J]. 海洋科学, 2014, 38(1): 85-90. doi: 10.11759/hykx20140114 [15] 郝振林, 郑斌, 李强, 等. 环境条件对海蜇生长发育影响的研究进展[J]. 大连海洋大学学报, 2015, 30(4): 444-448. [16] 乔英, 于守鹏, 张刚, 等. 海蜇苗种的中间培育技术[J]. 科学养鱼, 2019(8): 61-62. [17] 徐梦雪, 朱赟杰, 倪建忠, 等. 海蜇人工育苗试验[J]. 科学养鱼, 2017(10): 47-48. [18] 金鑫, 李超伦, 刘梦坛. 基于脂肪酸标记法和碳氮稳定同位素比值法的东海水母常见种的食性分析[J]. 海洋与湖沼, 2012, 43(3): 486-493. doi: 10.11693/hyhz201203013013 [19] BREIL C, ABERT VIAN M, ZEMB T, et al. "Bligh and Dyer" and folch methods for solid-liquid-liquid extraction of lipids from microorganisms. Comprehension of solvatation mechanisms and towards substitution with alternative solvents[J]. Int J Mol Sci, 2017, 18(4): 708. doi: 10.3390/ijms18040708 [20] 杨清源, 王少琴, 朱国平, 等. 西南大西洋拉氏南美南极鱼脂肪酸组成及其食性研究[J]. 大连海洋大学学报, 2016, 32(1): 86-92. [21] 王少琴, 杨清源, 朱国平, 等. 西南大西洋春夏季阿根廷无须鳕脂肪酸组分的时空特性[J]. 生态学杂志, 2018, 37(7): 2067-2075. [22] MILISENDA G, ROSSI S, VIZZINI S, et al. Seasonal variability of diet and trophic level of the gelatinous predator Pelagia noctiluca (Scyphozoa)[J]. Sci Rep, 2018, 8(1): 12140. doi: 10.1038/s41598-018-30474-x [23] PITT K, CONNOLLY R, MEZIANE T. Stable isotope and fatty acid tracers in energy and nutrient studies of jellyfish: a review[J]. Hydrobiologia, 2008, 616(1): 119-132. [24] 李培军, 谭克非, 叶昌臣. 辽东湾海蜇生长的研究[J]. 水产学报, 1988, 12(3): 243-250. [25] 郑斌. 养殖环境对海蜇产量影响及海蜇不同阶段营养成分分析[D]. 大连: 大连海洋大学, 2016: 8-17. [26] 刘希光, 于华华, 赵增芹, 等. 海蜇不同部位脂肪酸的组成研究[J]. 分析化学, 2004(12): 1635-1638. doi: 10.3321/j.issn:0253-3820.2004.12.017 [27] ALFARO A C. Diet of Littoraria scabra, while vertically migrating on mangrove trees: gut content, fatty acid, and stable isotope analyses[J]. Estuar Coast Shelf Sci, 2008, 79(4): 718-726. doi: 10.1016/j.ecss.2008.06.016 [28] EVERY S L, PETHYBRIDGE H R, CROOK D A, et al. Comparison of fin and muscle tissues for analysis of signature fatty acids in tropical euryhaline sharks[J]. J Exp Mar Biol Ecol, 2016, 479: 46-53. doi: 10.1016/j.jembe.2016.02.011 [29] AMIN S A, PARKER M S, ARMBRUST E V. Interactions between diatoms and bacteria[J]. Microbiol Mol Biol Rev, 2012, 76(3): 667-684. doi: 10.1128/MMBR.00007-12 [30] GLADYSHEV M I, SUSHCHIK N N, MAKHUTOVA O N. Production of EPA and DHA in auatic ecosystems and their transfer to the land[J]. Prostag Oth Lipid M, 2013, 107: 117-126. [31] 谢斌, 李云凯, 张虎, 等. 基于稳定同位素技术的海州湾海洋牧场食物网基础及营养结构的季节性变化[J]. 应用生态学报, 2017, 28(7): 2292-2298. [32] SARGENT J R, FALKPETERSEN S. The lipid biochemistry of calanoid copepods[J]. Hydrobiologia, 1988, 167(1): 101-114. [33] 朱小艳. 基于生物标记法的南设得兰群岛水域南极磷虾摄食研究[D]. 上海: 上海海洋大学, 2015: 11-21. [34] KATTNER G, HAGEN W. Lipids in marine copepods: latitudinal characteristics and perspective to global warming[M]. Springer NY, 2009: 257-280. [35] NELSON M M, PHLEGER C F, MOONEY B D, et al. Lipids of gelatinous Antarctic zooplankton: cnidaria and ctenophora[J]. Lipids, 2000, 35(5): 551-559. doi: 10.1007/s11745-000-555-5 [36] COPEMAN L, PARRISH C. Marine lipids in a cold coastal ecosystem: Gilbert Bay, Labrador[J]. Mar Biol, 2003, 143(6): 1213-1227. doi: 10.1007/s00227-003-1156-y [37] KELLY J R, SCHEIBLING R E, IVERSON S J. Fatty acids tracers for native and invasive macroalgae in an experimental food web[J]. Mar Ecol Prog, 2009, 391: 53-63. doi: 10.3354/meps08234 [38] STOWASSER G, MCALLEN R, PIERCE G, et al. Trophic position of deep-sea fish: assessment through fatty acid and stable isotope analyses[J]. Deep Sea Res I, 2009, 56(5): 812-826. doi: 10.1016/j.dsr.2008.12.016 [39] WAN R, WU Y, HUANG L, et al. Fatty acids and stable isotopes of a marine ecosystem: study on the japanese anchovy (Engraulis japonicus) food web in the Yellow Sea[J]. Deep Sea Res II, 2010, 57(11/12): 1047-1057. [40] STOWASSER G, POND D W, COLLINS M A. Using fatty acid analysis to elucidate the feeding habits of Southern Ocean mesopelagic fish[J]. Mar Biol, 2009, 156(11): 2289-2302. doi: 10.1007/s00227-009-1256-4 [41] ROSSI S, YOUNGBLUTH M J, JACOBY C A, et al. Fatty acid trophic markers and trophic links among seston, crustacean zooplankton and the siphonophore Nanomia cara in Georges Basin and Oceanographer Canyon[J]. Sci Mar, 2008, 72(2): 403-416. [42] 金鑫, 李超伦, 孙松, 等. 基于脂肪酸标记的长江口海区浮游动物常见种食性分析[J]. 海洋与湖沼, 2012, 43(6): 1083-1090. doi: 10.11693/hyhz201206008008 [43] FUKUDA Y, NAGANUMA T. Potential dietary effects on the fatty acid composition of the common jellyfish Aurelia aurita[J]. Mar Biol, 2001, 138(5): 1029-1035. doi: 10.1007/s002270000512 [44] KRITZBERG E S, COLE J J, PACE M L, et al. Autochthonous versus allochthonous carbon sources of bacteria: results from whole-lake 13c addition experiments[J]. Limnol Oceanogr, 2004, 49(2): 588-596. doi: 10.4319/lo.2004.49.2.0588 [45] 李云凯. 稳定同位素技术在鲨鱼摄食和洄游行为研究中的应用[J]. 应用生态学报, 2014, 25(9): 2756-2764. [46] 张旭峰. 海洋底栖动物稳定同位素和脂肪酸组成的地域性差异研究[D]. 大连: 大连海事大学, 2017: 15-27. [47] BOUTTON T W. Stable carbon isotope ratios of natural materials: II. Atmospheric, terrestrial, marine, and freshwater environments[J]. Carbon Isot Tech, 1991(1): 173-185. [48] BOUILLON S, CHANDRA MOHAN P, SREENIVAS N. Sources of suspended organic matter and selective feeding by zooplankton in an estuarine mangrove ecosystem as traced by stable isotopes[J]. Mar Ecol Prog Ser, 2000, 208: 79-92. doi: 10.3354/meps208079 [49] 孙明, 王彬, 李玉龙, 等. 基于碳氮稳定同位素技术研究辽东湾海蜇的食性和营养级[J]. 应用生态学报, 2016, 27(4): 1103-1108. [50] SARDENNE F, BODIN N, CHASSOT E, et al. Trophic niches of sympatric tropical tuna in the western Indian Ocean inferred by stable isotopes and neutral fatty acids[J]. Prog Oceanogr, 2016, 146: 75-88. doi: 10.1016/j.pocean.2016.06.001 [51] ANTONIO E S, RICHOUX N B. Trophodynamics of three decapod crustaceans in a temperate estuary using stable isotope and fatty acid analyses[J]. Mar Ecol Progr Ser, 2014, 504: 193-205. doi: 10.3354/meps10761 -