Spatio-temporal patterns of CPUE of grass carp and silver carp and effect of temperature on CPUE in Pearl River basin
-
摘要: 文章采用随机等距抽样,调查了2016—2018年珠江流域9个采样点共计90艘船每天的渔获物产量及销售额。采用kruskal检验、广义加性模型和时间序列分析对草鱼 (Ctenopharyngodon idellus) 和鲢 (Hypophthalmichthys molitrix) 的单位捕捞努力量渔获量 (Catch per unit effort, CPUE) 时空变动特征及温度影响进行分析。结果显示,珠江流域草鱼和鲢产量在总渔获中占比分别为 (6.6±8.1)%和 (4.4±5.0)%,销售额占比分别为 (6.0±8.2)%和 (2.5±2.6)%;草鱼和鲢CPUE分别为 (5.5±7.3) kg·(艘·月)−1和 (5.6±10.3) kg·(艘·月)−1。草鱼和鲢CPUE在珠江中上游江段显著高于河口区域 (P<0.05),与温度呈显著正相关关系 (P<0.01),其时间变动主要受禁渔期影响;草鱼CPUE年际变化呈上升趋势,而鲢呈下降趋势。与历史数据相比,草鱼和鲢在渔获物中的质量占比均有明显增加,这可能主要得益于增殖放流和禁渔期制度。Abstract: We investigated the production and economic benefits of grass carp (Ctenopharyngodon idellus) and silver carp (Hypophthalmichthys molitrix) in the Pearl River basin by using the method of isometric random sampling. A total of 90 vessels were daily surveyed from nine locations from 2016 to 2018. The kruskal test, generalized additive model and time series analysis were used to analyze the spatial and temporal patterns of CPUE (Catch per unit effort) of grass carp and silver carp and to explore the effect of temperature on the CPUE. The results show that the biomass of grass carp and silver carp attributed (6.6±8.1)% and (4.4±5.0)% respectively, to the total catches in the Pearl River basin, and produced (6.0±8.2)% and (2.5±2.6)% economic benefit of the total income. In addition, the CPUE was (5.5±7.3) and (5.6±10.3) kg·(vessel·month)−1, respectively. The CPUE of two species was significantly higher in the middle and upper reaches than that in the estuary area (P<0.05). The temporal variations in CPUE of grass carp and silver carp were mainly effected by closed season. Temperature had a significant positive effect on the CPUE of both species (P<0.01). The CPUE of grass carp and silver carp showed an increasing and decreasing trend with year, respectively. By contrast with the historical data, the biomass of both carps increased obviously in the past decade. The increasing production of grass carp and silver carp observed in this study might be largely benefited from proliferation and release as well as closed season.
-
Key words:
- Fishery resources /
- Spatial and temporal patterns /
- CPUE /
- Time series /
- Atmospheric temperature /
- Pearl River basin
-
图 3 不同采样点草鱼 (a) 和鲢 (b) 单位捕捞努力量渔获量箱图
图顶部不同字母表示有显著差异 (P<0.05),相同字母表示无显著差异 (P>0.05),后图同此
Figure 3. Box plot of CPUE of C. idellus (a) and H. molitrix (b) at different sampling sites
Different lowercase letters at the top indicate significant difference between sites (P<0.05); the same letters indicate there is no significant difference between two sites (P>0.05). The same case in the following figures.
图 5 2016—2018年草鱼 (a) 和鲢 (b) 单位捕捞努力量渔获量时序数据季节性分解
时序数据被分解成季节效应、趋势图以及随机波动,图右侧灰色长条指示量级
Figure 5. Decomposed results of CPUE series of C. idellus (a) and H. molitrix (b) from 2016 to 2018
From top to bottom are the observed data, seasonal effects, trend effect, and random variability. The grey boxes represent the relative magnitude of variation in each component.
表 1 各采样点的位置信息及环境特征
Table 1. Coordinates and environment characteristics of sampling sites
站位
Site所属江段
Subordinate river经纬度
Coordinate日均最低气温
Mean daily minimum temperature/℃生境特征
Habitat characteristics梅县 MX 韩江梅江段 116°5'12''E, 24°15'46''N 18.1±6.6 干流 新会 XH 珠江河网区 113°1'1''E, 22°27'26''N 20.6±5.9 河口 德庆 DQ 珠江下游西江段 111°47'4''E, 23°8'16''N 18.8±6.4 干流 藤县 TX 珠江中游浔江段 110°54'54''E, 23°22'36''N 18.4±6.5 干流 廉江 LJ 九州江鹤地水库 110°18'21''E, 21°45'17''N 20.8±5.5 库区 兴宾 XB 珠江上游红水河段 109°13'39''E, 23°43'36''N 18.2±6.7 干流 横县 HX 珠江支流郁江 109°15'38''E, 22°40'50''N 18.8±6.5 一级支流 扶绥 FS 珠江支流左江 107°54'3''E, 22°38'5''N 19.0±6.0 二级支流 巴马 BM 珠江上游红水河段岩滩水库 107°34'48''E, 24°9'24''N 17.8±6.0 库区 表 2 广义加性模型分析温度对草鱼和鲢单位捕捞努力量渔获量的影响
Table 2. Generalized additive model results of effect of temperature on CPUE of C. idellus and H. molitrix
模型变量
Model variable草鱼 C. idellus 鲢 H. molitrix F P 累积解释偏差
Cumulative deviance explained/%F P 累积解释偏差
Cumulative deviance explained/%温度 Temperature 3.87 <0.01 11.9 2.47 0.03 1.80 年 Year 1.11 0.33 12.1 7.86 <0.01 3.62 采样点 Site 56.64 <0.01 61.5 59.83 <0.01 66.30 距河口距离 Distance from estuary 87.53 <0.01 61.5 99.10 <0.01 66.30 注:粗体表示有显著影响 (P<0.05)
Note: Significant results are showed in boldface type (P<0.05). -
[1] 农业农村部渔业渔政管理局. 中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2019: 24-25. [2] 王尚玉, 廖文根, 陈大庆, 等. 长江中游四大家鱼产卵场的生态水文特性分析[J]. 长江流域资源与环境, 2008, 17(6): 892-897. [3] 刘飞, 林鹏程, 黎明政, 等. 长江流域鱼类资源现状与保护对策[J]. 水生生物学报, 2019, 43(S): 144-156. [4] 张亚辉, 龚江, 梁杰锋, 等. 体重和温度对草鱼摄食小浮萍的影响[J]. 水生态学杂志, 2018, 39(1): 56-62. [5] 薛慧敏, 李跃飞, 武智, 等. 水温对珠江中下游鳜属鱼类早期资源补充的影响[J]. 淡水渔业, 2019, 49(3): 59-65. [6] GUO C, CHEN Y, GOZLAN R E, et al. Biogeographic freshwater fish pattern legacy revealed despite rapid socio-economic changes in China[J]. Fish Fish, 2019, 20(5): 857-869. doi: 10.1111/faf.12380 [7] GISLASON H, DAAN N, RICE J, et al. Size, growth, temperature and the natural mortality of marine fish[J]. Fish Fish, 2010, 11(2): 149-158. doi: 10.1111/j.1467-2979.2009.00350.x [8] 唐丽君, 张筱帆, 张堂林, 等. 水温对鲢早期发育的影响[J]. 华中农业大学学报, 2014, 33(1): 92-96. [9] 柯志新, 谢平, 过龙根, 等. 太湖梅梁湾生物控藻围栏内鲢、鳙比肠长和比肝重的动态变化[J]. 水生态学杂志, 2012, 33(3): 9-13. [10] 孙健, 贺锋, 吴振斌, 等. 影响草鱼摄食水生植物因素的研究进展[J]. 水产学杂志, 2019, 32(3): 53-57. [11] 孟艳丽, 曾名湧, 张军宁, 等. 温度对鲢鱼肽美拉德反应产物的化学特性和抗氧化活性的影响[J]. 海洋湖沼通报, 2013(1): 69-74. [12] 蒋清, 黄应平, 袁喜, 等. 不同温度下重复疲劳运动对鲢幼鱼游泳能力及代谢率的影响[J]. 水生态学杂志, 2016, 37(6): 89-94. [13] 罗伟, 许艳, 刘晓娟, 等. 水温对草鱼血清活性氧含量及抗氧化防御系统的影响[J]. 淡水渔业, 2017, 47(4): 3-7. [14] 曹平, 穆祥鹏, 白音包力皋, 等. 与鱼道水力设计相关的草鱼幼鱼游泳行为特性研究[J]. 水利学报, 2017, 48(12): 1456-1464. [15] 《中国河湖大典》编纂委员会. 中国河湖大典 珠江卷[M]. 北京: 中国水利水电出版社, 2013: 1-6. [16] 李新辉, 陈方灿, 梁沛文. 珠江水系鱼类原色图集 (广东段)•前言[M]. 北京: 科学出版社, 2018: 1. [17] XING Y C, ZHANG C G, FAN E Y, et al. Freshwater fishes of China: species richness, endemism, threatened species and conservation[J]. Divers Distrib, 2016, 22(3): 358-370. doi: 10.1111/ddi.12399 [18] 张迎秋, 黄稻田, 李新辉, 等. 西江鱼类群落结构和环境影响分析[J]. 南方水产科学, 2020, 16(1): 42-52. [19] 李跃飞, 李新辉, 谭细畅, 等. 西江肇庆江段渔业资源现状及其变化[J]. 水利渔业, 2008, 28(2): 80-83. [20] 李捷, 李新辉, 贾晓平, 等. 西江鱼类群落多样性及其演变[J]. 中国水产科学, 2010, 17(2): 298-311. [21] 帅方敏, 李新辉, 刘乾甫, 等. 珠江水系鱼类群落多样性空间分布格局[J]. 生态学报, 2017, 37(9): 3182-3192. [22] APPELBERG M. Swedish standard methods for sampling freshwater fish with multi-mesh gillnets[J]. Fiskeriverket Inf, 2000, 1: 3-32. [23] MAUNDER M N, PUNT A E. A review of integrated analysis in fisheries stock assessment[J]. Fish Res, 2013, 142: 61-74. doi: 10.1016/j.fishres.2012.07.025 [24] HOYLE S D, LANGLEY A D. Scaling factors for multi-region stock assessments, with an application to Indian Ocean tropical tunas[J]. Fish Res, 2020, 228: 105586. doi: 10.1016/j.fishres.2020.105586 [25] ZUUR A F, IENO E N, WALKER N J, et al. Mixed effects models and extensions in ecology with R[M]. New York: Springer, 2009: 101-142. [26] XIA Y, ZHAO W, XIE Y, et al. Ecological and economic impacts of exotic fish species on fisheries in the Pearl River basin[J]. Manag Biol Inv, 2019, 10(1): 127-138. [27] R Development Core Team. R: a language and environment for statistical computing [EB/OL]. [2019-11-12]. http://www.r-project.org/. [28] WARNES G R, BOLKER B, BONEBAKKER L, et al. Various R programming tools for plotting data [EB/OL]. [2020-07-05]. https://cran.r-project.org/web/packages/gplots/. [29] TIAO G C, BOX G E P. Modeling multiple time series with applications[J]. J Am Stat Assoc, 1981, 76(376): 802-816. [30] LIAN Y, HUANG G, GODLEWSKA M, et al. Hydroacoustic estimates of fish biomass and spatial distributions in shallow lakes[J]. Chin J Oceanol Limnol, 2017, 36(2): 587-597. [31] GALAIDUK R, RADFORD B T, HARVEY E S. Utilizing individual fish biomass and relative abundance models to map environmental niche associations of adult and juvenile targeted fishes[J]. Sci Rep, 2018, 8(1): 9457. doi: 10.1038/s41598-018-27774-7 [32] 欧阳力剑, 郭学武. 温度对鱼类摄食及生长的影响[J]. 海洋科学集刊, 2008, 49: 87-95. [33] 农业部. 农业部关于发布珠江、闽江及海南省内陆水域禁渔期制度的通告[EB/OL]. (2017-03-20). [2020-04-06]. http://www.moa.gov.cn/nybgb/2017/dsanq/201712/t20171228_6133423.htm. [34] 俞立雄. 长江中游四大家鱼典型产卵场地形及水动力特征研究[D]. 重庆: 西南大学, 2018: 85-109. -