Research on salinity tolerance of Sinogastromyzon szechuanensis
-
摘要: 文章通过设置盐度梯度,对平均体质量为 (8.495±1.11) g的四川华吸鳅 (Sinogastromyzon szechuanensis) 开展了盐度耐受性研究,以期为该物种保护及人工养殖提供理论依据。结果表明,盐度对四川华吸鳅作用 24、48、72和96 h的半致死浓度 (LC50) 分别为10.50、10.15、9.83和9.46 g·L−1,安全浓度为2.32 g·L−1。四川华吸鳅经盐度胁迫4 h后,盐度小于7 g·L−1各组的呼吸频率较初期下降,盐度大于7 g·L−1各组的呼吸频率较初期显著升高 (P<0.05),2 g·L−1组的呼吸频率为 (150.0±5.57) 次·min−1,显著高于0 g·L−1组 (P<0.05)。在0~7 g·L−1盐度胁迫下适应4 h,2 g·L−1组的四川华吸鳅窒息点最低 [(0.81±0.02) mg·L−1];适应96 h后,各盐度组四川华吸鳅的窒息点均下降,0~1 g·L−1组的窒息点最低 [(0.60±0.06) mg·L−1]。研究表明,四川华吸鳅具有一定的低盐度耐受力,窒息点相比一般淡水鱼类高。若利用呼吸频率来监测盐度对四川华吸鳅的安全浓度,建议不超过 (150.0±5.57) 次·min−1。在运输中将盐度控制在0~1 g·L−1,有助于增强四川华吸鳅的耐低氧能力,提高成活率。Abstract: We measured the salinity tolerance of Sinogastromyzon szechuanensis with average body mass of (8.495±1.11) g, to provide theoretical basis for its conservation and artificial culture. The results show that the half lethal concentrations (LC50) of salinity at 24th, 48th, 72nd and 96th hour was 10.50, 10.15, 9.83 and 9.46 g·L−1, respectively. The safe concentration was 2.32 g·L−1. After 4 h of salinity stress in S. szechuanensis, compared with the initial stage, the respiration frequency in groups with salinities less than 7 g·L−1 decreased, and the respiration frequency of groups with salinity higher than 7 g·L−1 increased significantly (P<0.05). The respiratory rate of 2 g·L−1 group was (150.0±5.57) times·min−1, significantly higher than that of the 0 g·L−1 group (P<0.05). Being adapted to (0–7) g·L−1 salinity stress for 4 h, the asphyxia point of S. szechuanensis in 2 g·L−1 group was the lowest [(0.81±0.02) mg·L−1]. After 96 h adaptation, the asphyxia point of S. szechuanensis in each salinity group decreased, and the asphyxia point of (0–1) g·L−1 was the lowest [(0.60±0.06) mg·L−1]. It is concluded that S. szechuanensis has low salinity tolerance, and its asphyxiation point is higher than that of common freshwater fish. The critical value of using salinity to monitor the salinity to the safe concentration of S. szechuanensis is (150.0±5.57) times·min−1. Therefore, the salinity should to be conctrolled as (0–1) g·L−1 in transportation, which is helpful to enhance the hypoxia tolerance and survival rate of S. szechuanensis.
-
图 1 盐度对四川华吸鳅呼吸频率的影响
同一指标中,有1个字母相同则组间无显著差异 (P>0.05),反之则有显著差异 (P<0.05),水温为 (15.5±0.5) ℃,后图同此
Figure 1. Effect of salinity on respiration frequency of S. szechuanensis
Values with the same and different letters for the same index indicate insignificant (P>0.05) and significante difference (P<0.05), respectively; water temperature was (15.5±0.5) ℃. The same case in the following figure.
表 1 不同盐度下四川华吸鳅的死亡率
Table 1. Mortality of S. szechuanensis at different salinity levels
盐度
Salinity/(g·L−1)死亡率 Mortality/% 24 h 48 h 72 h 96 h 8.00 0 0 0 10 8.56 0 0 10 30 9.16 0 20 40 60 9.80 20 40 60 60 10.48 60 60 70 70 11.22 70 80 80 80 12.00 90 100 100 100 表 2 盐度对四川华吸鳅不同时间的半致死浓度
Table 2. Lethal concentration of salinity to S. szechuanensis at different time
处理时间
Processing time/h回归方程
Regression equation相关系数
Correlation coefficient尾数
Number半致死浓度
LC50 /(g·L−1)24 y=0.254 6x−2.174 3 0.920 5 30 10.50 48 y=0.269 1x−2.232 2 0.986 0 30 10.15 72 y=0.25x−1.958 2 0.962 7 30 9.83 96 y=0.201 8x−1.41 0.924 5 30 9.46 表 3 四川华吸鳅和部分鱼类对盐度耐受性比较
Table 3. Comparison of salinity tolerance between S. szechuanensis and some fish
种名
Species半致死浓度 LC50/(g·L−1) 体长
Body length/cm安全浓度
Safe
concentration/(g·L−1)24 h 48 h 72 h 96 h 四川华吸鳅 S. szechuanensis 10.5 10.15 9.83 9.46 9.5±0.5 2.85 麦穗鱼[21] P. parva 11.67 11.43 11.38 11.25 2.5±0.5 3.29 昆明裂腹鱼[22] S. grahami 15.24 12.81 12.27 11.82 16.71±0.77 2.72 鲢 (幼鱼)[22] H. molitrix (Young fish) 11.2 9 8.6 8.2 5.4~8.2 1.74 彭泽鲫 (幼鱼)[22] C. auratus var. pengza (Young fish) 9.99 7.87 6.88 6.68 3.26~3.68 1.47 咸海卡拉白鱼 (幼鱼)[24] C. chalcoides aralensis (Young fish) 11.32 11.91 9.16 − 0.5~0.9 3.96 咸海卡拉白鱼 (成鱼)[22] C. chalcoides aralensis (Adult fish) 22.61 21.66 − 21.24 6.95~8.50 5.96 黑龙江泥鳅[29] M. mohoity dybowsky 15.64 14.97 14.18 13.58 12.72±0.85 4.11 大鳞副泥鳅[29] P. dabryanus Sauvage 15.43 14.74 14.29 14.18 17.25±0.73 4.04 达里湖高原鳅[29] T. dalaica 14 13.47 12.56 11.57 9.36±1.23 3.74 黄鳝[23] M. albus 17.63 16.29 15.62 15.46 28~29 4.17 注:−. 无数据
Note: −. No data表 4 四川华吸鳅与几种鱼类窒息点比较
Table 4. Comparison of suffocation points between S. szechuanensis and other fish
种类
Species窒息点
Suffocation point/(mg·L−1)种类
Species窒息点
Suffocation point/(mg·L−1)鲫 Carassius auratus 0.11~0.13 白甲鱼 Onychostoma sima 0.70 鳙 Aristichthys nobilis 0.19 厚颌鲂 Megalobrama pellegrini 0.73~1.04 草鱼 Ctenopharyngodon idellus 0.24 黄颡鱼 Pelteobagrus fulvidraco 0.75 鲢 Hypophthalmichys molitrix 0.26 瓦氏黄颡鱼 Pelteobagrus vachelli 0.91 鲤 Cyprinus carpio 0.30~0.34 卵形鲳鲹 Trachinotus ovatus 0.93~1.05 中华倒刺鲃 Spinibarbus sinensis 0.47 圆口铜鱼 Coreius guichenoti 0.95~1.63 翘嘴鲌 Erythroculter ilishaeformis 0.43~0.57 长薄鳅 Leptobotia elongata 0.98~1.16 鲻 Mugil cephalus 0.50~0.79 千年笛鲷 Lutjanus sebae 1.03~2.09 四川华吸鳅 Sinogastromyzon szechuanensis 0.60~0.80 浅色黄姑鱼 Nibea coibor 1.86~1.90 青鱼 Mylopharyngodon piceus 0.63~0.89 真鲷 Pagrosomus major 2.10~2.90 -
[1] 杨骏, 郭延蜀. 中国四川省华吸鳅属鱼类一新种 (鲤形目, 爬鳅科)[J]. 动物分类学报, 2013, 38(4): 895-900. [2] YUE L J, CHEN X J, LI W. Analysis and evaluation of nutritional components in muscle of Sinogastromyzon szechuanensis[J]. J Phys Conf Ser, 2019, 1423(1): 13-17. [3] 郑曙明. 中国原生观赏鱼图鉴[M]. 北京: 科学出版社, 2015: 120-121. [4] 熊飞, 刘红艳, 段辛斌, 等. 长江上游宜宾江段渔业资源现状研究[J]. 西南大学学报 (自然科学版), 2015, 37(11): 43-50. [5] 陈小江, 熊俐灵, 吴建顾, 等. MS-222和丁香酚对四川华吸鳅耗氧率和排氨率的影响[J]. 南方水产科学, 2020, 16(4): 1-6. doi: 10.12131/20190231 [6] 王芊芊. 赤水河鱼类早期资源调查及九种鱼类早期发育的研究[D]. 武汉: 华中师范大学, 2008: 33-36. [7] 杨青瑞. 雅砻江下游鱼类资源调查及保护措施[J]. 水生态学杂志, 2011, 32(3): 94-98. [8] WU J M, LI L, HAO D U, et al. Length-weight relations of 14 endemic fish species from the upper Yangtze River basin, China[J]. Acta Ichthyol Piscat, 2013, 43(2): 163-165. doi: 10.3750/AIP2013.43.2.09 [9] LIU K, WANG X D, WU B, et al. Length-weight relationships of 11 fish species from the Nuoshuihe precious water animal national nature reserve, southwestern China[J]. J Appl Ichthyol, 2017, 33(6): 1274-1276. doi: 10.1111/jai.13473 [10] WANG J, JIANG X M, PAN B Z, et al. Length-weight relationships of three indigenous fish species from national nature reserve for rare and endemic fishes of the upper Yangtze River, China[J]. J Appl Ichthyol, 2018, 34(4): 1014-1016. doi: 10.1111/jai.13640 [11] CHEN X, XIONG L, WU J, et al. Effects of anesthetic eugenol on respiration and excretion of Sinogastromyzon szechuanensis[J]. J Phys Conf Ser, 2019, 1423(1): 1-4. [12] 刘飞, 黎良, 刘焕章, 等. 赤水河赤水市江段鱼卵漂流密度的昼夜变化特征[J]. 淡水渔业, 2014, 44(6): 89-94. [13] 吴金明, 王芊芊, 刘飞, 等. 赤水河四川华吸鳅的早期发育[J]. 四川动物, 2011, 30(4): 527-529. doi: 10.3969/j.issn.1000-7083.2011.04.002 [14] ZOU Y C, YAN Y, CHEN M, et al. Complete mitochondrial genome and phylogenetic analysis of Sinogastromyzon szechuanensis (Teleostei, Cypriniformes, Homalopteridae)[J]. Mitochondrial DNA B, 2018, 3(1): 272-273. doi: 10.1080/23802359.2018.1443033 [15] 李加儿, 曹守花, 区又君, 等. 温度、盐度和pH对鲻幼鱼耗氧率、排氨率以及窒息点的影响[J]. 中国水产科学, 2014, 21(5): 954-962. [16] 章征忠, 张兆琪. 鲢鱼幼鱼对盐, 碱耐受性的研究[J]. 青岛海洋大学学报 (自然科学版), 1999, 29(3): 441-446. [17] 曾荣林, 谢仰杰, 王志勇, 等. 大黄鱼幼鱼对低盐度的耐受性研究[J]. 集美大学学报 (自然科学版), 2013, 18(3): 11-15. [18] 赵月, 薛晓强, 王帅, 等. 不同温度下4种常见孔雀鱼的盐度耐受极限试验[J]. 大连海洋大学学报, 2018, 33(4): 499-503. [19] 郑伟刚, 张兆琪, 张美昭. 澎泽鲫幼鱼对盐度和碱度耐受性的研究[J]. 集美大学学报 (自然科学版), 2004, 9(2): 127-130. [20] 沈立, 郝卓然, 周凯. 异育银鲫“中科三号”对盐度和碳酸盐碱度的耐受性[J]. 海洋渔业, 2014, 36(5): 445-452. doi: 10.3969/j.issn.1004-2490.2014.05.009 [21] 徐晓丽, 张彩军, 吴剑峰, 等. 麦穗鱼对盐度和酸碱度的耐受性[J]. 湖北农业科学, 2012, 51(7): 1423-1425. doi: 10.3969/j.issn.0439-8114.2012.07.037 [22] 胡思玉, 陈雪梅, 赵海涛, 等. 昆明裂腹鱼幼鱼对盐度的耐受性研究[J]. 四川动物, 2014, 33(3): 430-433. [23] 周文宗, 宋祥甫, 陈桂发. 黄鳝对盐碱耐受性的研究[J]. 淡水渔业, 2014, 44(3): 95-99. doi: 10.3969/j.issn.1000-6907.2014.03.017 [24] 姜秋俚, 蔺玉华, 王信海, 等. 咸海卡拉白鱼胚胎及仔鱼对盐碱耐受性的研究[J]. 吉林农业大学学报, 2008, 30(2): 105-111. [25] 雷衍之. 养殖水环境化学[M]. 北京: 中国农业出版社, 2004: 201-202. [26] 章龙珍, 罗集光, 赵峰, 等. 盐度对点篮子鱼血清渗透压、离子含量及鳃丝Na+/K+-ATP酶活力的影响[J]. 海洋渔业, 2015, 37(5): 63-70. [27] 李培伦, 刘伟, 王继隆, 等. 盐度对养殖大麻哈鱼血液生化指标及消化酶活力的影响[J]. 西北农林科技大学学报 (自然科学版), 2020, 48(9): 11-16. [28] 邓平平, 施永海, 汪洋, 等. 盐度对长江刀鲚幼鱼非特异性免疫酶和消化酶活力的影响[J]. 大连海洋大学学报, 2016, 31(5): 533-537. [29] 武鹏飞, 耿龙武, 姜海峰, 等. 三种鳅科鱼对NaCl盐度和NaHCO3 碱度的耐受能力[J]. 中国水产科学, 2017, 24(2): 248-257. [30] 汪红军, 李嗣新, 周连凤, 等. 5种重金属暴露对斑马鱼呼吸运动的影响[J]. 农业环境科学学报, 2010, 29(9): 1675-1680. [31] CAIRNS M A, GARTON R R, TUBB R A. Use of fish ventilation frequency to estimate chronically safe toxicant concentrations[J]. T Am Fish Soc, 1982, 111(1): 70-77. doi: 10.1577/1548-8659(1982)111<70:UOFVFT>2.0.CO;2 [32] 吴仓仓, 付占斐, 王芳, 等. 温度和盐度胁迫下虹鳟和硬头鳟抗应激能力的比较[J]. 中国海洋大学学报 (自然科学版), 2019, 49(3): 99-112. [33] 郭黎, 马爱军, 王新安, 等. 盐度和温度对大菱鲆幼鱼抗氧化酶活性的影响[J]. 大连海洋大学学报, 2012, 27(5): 422-428. doi: 10.3969/j.issn.2095-1388.2012.05.008 [34] 宿志健, 张旭, 王丽群, 等. 不同盐度、pH对禾花鲤窒息点的研究[J]. 水产研究, 2019, 6(4): 141-148. [35] 王辉, 强俊, 李瑞伟. 温度、盐度、pH和体质量对尼罗罗非鱼幼鱼窒息点的影响[J]. 广东海洋大学学报, 2011, 31(3): 41-46. -