留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

花鲈垂体和下丘脑中生物钟基因在3种光周期下的表达节律分析

袁满 王鹏飞 闫路路 赵超 范嗣刚 陈祥 邱丽华

引用本文:
Citation:

花鲈垂体和下丘脑中生物钟基因在3种光周期下的表达节律分析

    作者简介: 袁 满 (1996—),女,硕士,研究方向为鱼类繁殖生物学。E-mail: madisony@163.com;
    通讯作者: 邱丽华, qiugroup_bio@outlook.com
  • 中图分类号: S 917.4

Circadian rhythmicity of clock genes in pituitary and hypothalamus of spotted sea perch (Lateolabrax maculates) under three photoperiod conditions

    Corresponding author: Lihua QIU, qiugroup_bio@outlook.com
  • CLC number: S 917.4

  • 摘要: 花鲈 (Lateolabrax maculatus) 是中国重要的水产养殖鱼类,其繁殖活动受到光周期的调控。文章研究了3种光周期 (光暗比为16L∶8D、12L∶12D和8L∶16D) 条件下,7个重要生物钟基因 (Bmal2、Npas4、Per2、Cry1、Cry1a、Cry2) 及Timeless在花鲈垂体和下丘脑中的昼夜表达规律。结果表明,在12L∶12D条件下垂体中Per2、Cry1、Cry2、Cry1aTimeless表现出昼夜节律性,下丘脑中Per2、Cry2、Cry1、Timeless表现出昼夜节律性,相同基因在垂体和下丘脑两种组织中的昼夜节律不同,长光照或者短光照会改变昼夜节律的震荡强弱、也会改变峰值相位,部分基因在长光照或者短光照下会出现失去昼夜节律性的现象。
  • 图 2  3种光周期下花鲈下丘脑中生物钟基因mRNA昼夜节律表达的时间模式

    Figure 2.  Relative expression of clock genes in hypothalamus under three photoperiod conditions

    图 1  3种光周期下花鲈垂体中生物钟基因mRNA昼夜节律表达的时间模式

    Figure 1.  Relative expression of clock genes in pituitary under three photoperiod conditions

    表 1  荧光定量引物

    Table 1.  Primers for qRT-PCR

    引物名称
    Primer name
    序列 (5'–3')
    Sequence
    qBmal2-F TCTGAAAGTACAGGCGAGCCGTCCCA
    qBmal2-R CAGTGTAAGTCATCAAAGTCCCCAGT
    qPer2-F CCCCACCGTCCTTCAG
    qPer2-R TCCCATTCAGCCGCATTA
    qNpas4-F GTCATCTCCTGTGTCCTCTTGCT
    qNpas4-R ACTTCCACTCCCATCTTTGTG
    qCry1-F GACTGGGCTCTGAATGCTGGAA
    qCry1-R TGCCTGCTGAATACTGCGTGGAG
    qCry1a-F CAAAGCAGTATGGGCAGGT
    qCry1a-R AGTAGAAGAGCCGACAGGAGA
    qCry2-F GTCAATGCTGGCAGTTGGATGTGG
    qCry2-R GGGATGTAACGCCTGATGTATTCT
    qTimeless-F GAAACCAGACAGCCTCACTCCTAC
    qTimeless-R AAAGACTCCGACAACTGAAACCCT
    qβ-actin-F CAACTGGGATGACATGGAGAAG
    qβ-actin-R TTGGCTTTGGGGTTCAGG
    下载: 导出CSV

    表 2  花鲈垂体中生物钟基因mRNA表达的昼夜节律性参数

    Table 2.  Circadian rhythmic parameters of clock genes mRNA expressions in pituitary of L. maculatus

    基因
    Gene
    光周期
    Photoperiod
    振幅
    Amplitude
    峰值相位
    Acrophase
    中值
    Mesor
    P
    16L∶8D0.471
    Bmal212L∶12D0.416
    8L∶16D0.2
    16L∶8D0.07
    Naps412L∶12D0.274
    8L∶16D0.286
    16L∶8D41.084 1−18.890 543.894 7<0.001
    Per212L∶12D0.253 60.226 60.187 7<0.001
    8L∶16D0.371 2−0.366 80.452 40.001
    16L∶8D0.951 99.299 71.390 5<0.001
    Cry112L∶12D1.314 00.420 31.455 6<0.001
    8L∶16D1.165 710.981 01.647 0<0.001
    16L∶8D0.364 26.375 61.577 30.002
    Cryla12L∶12D0.498 90.568 90.648 5<0.001
    8L∶16D0.238 8−7.008 31.027 7<0.001
    16L∶8D47.911 90.018 231.143 5<0.001
    Cry212L∶12D3.106 315.143 02.599 7<0.001
    8L∶16D29.750 8−16.533 134.491 7<0.001
    16L∶8D0.354 5−4.266 80.860 5<0.001
    Timeless12L∶12D3.368 8−1.157 92.785 8<0.001
    8L∶16D1.264 410.797 52.447 2<0.001
    注:振幅为拟合波形峰值之间距离的一半;中值为周期平均值;峰值为相位周期最高幅度的时间点 (弧度);P为时间点间的差异;后表同此 Note: Note: The amplitude is half of the distance between the peak values of the fitting waveform; the median value is the periodic average value; the peak value is the time point (radian) with the highest amplitude of phase period; P is the difference between time points; the same case in the following table.
    下载: 导出CSV

    表 3  花鲈下丘脑中生物钟基因mRNA表达的昼夜节律性参数

    Table 3.  Circadian rhythmic parameters of clock genes mRNA expressions in hypothalamus of L. maculatus

    基因
    Gene
    处理组
    Photoperiod
    振幅
    Amplitude
    峰值相位
    Acrophase
    中值
    Mesor
    P
    16L∶8D0.469
    Bmal212L∶12D0.06
    8L∶16D0.26
    16L∶8D0.762
    Naps412L∶12D0.166
    8L∶16D0.095
    16L∶8D0.472 1−8.423 10.808 70.018
    Per212L∶12D2.773 3−8.478 73.971 50.001
    8L∶16D0.896 2−11.462 81.088 00.004
    16L∶8D0.436 6−5.273 31.408 40.006
    Cry112L∶12D0.378 30.461 11.654 00.007
    8L∶16D1.741 5−0.099 91.554 6<0.001
    16L∶8D0.096 4−1.274 20.876 50.047
    Cryla12L∶12D1.000 01.436 00.000 30.017
    8L∶16D1.038 8-9.228 11.978 6<0.001
    16L∶8D44.338 77.936 424.514 2<0.001
    Cry212L∶12D2.681 08.881 44.563 0<0.001
    8L∶16D6.819 88.026 94.909 8<0.001
    16L∶8D9.888 2−4.9516.863 4<0.001
    Timeless12L∶12D2.955 79.236 63.071 5<0.001
    8L∶16D78.572 9−6.378 345.208 1<0.001
    下载: 导出CSV
  • [1] VELARDE E, HAQUE R, IUVONE P M, et al. Circadian clock genes of goldfish, <italic>Carassius auratus</italic>: cDNA cloning and rhythmic expression of period and cryptochrome transcripts in retina, liver, and gut[J]. J Biol Rhythm, 2009, 24(2): 104-113. doi:  10.1177/0748730408329901
    [2] SCHMUTZ I, RIPPERGER J A, BAERISWYL-AEBISCHER S, et al. The mammalian clock component PERIOD2 coordinates circadian output by interaction with nuclear receptors[J]. Genes Dev, 2010, 24(4): 345-357. doi:  10.1101/gad.564110
    [3] CHANG D C. Neural circuits underlying circadian behavior in Drosophila melanogaster[J]. Behav Process, 2006, 71(2/3): 211-225.
    [4] KLEIN D C, MOORE R Y, REPPERT S M. Suprachiasmatic nucleus: the mind's clock[J]. Electroen Clin Neuro, 1993, 86(6): 446-447.
    [5] UNDERWOOD H, STEELE C T, ZIVOKOVIC B. Circadian organization and the role of the pineal in birds[J]. Microsc Res Tech, 2001, 53(1): 48-62. doi:  10.1002/jemt.1068
    [6] FALCON J. Cellular circadian clocks in the pineal[J]. Prog Neurobiol, 1999, 58(2): 121-162. doi:  10.1016/S0301-0082(98)00078-1
    [7] NAKANE Y, IKEGAMI K, IIGO M, et al. The saccus vasculosus of fish is a sensor of seasonal changes in day length[J]. Nat Commun, 2013, 4: 1-7.
    [8] CEINOS R M, CHIVITE M, LÓPEZ-PATIÑO M A, et al. Differential circadian and light-driven rhythmicity of clock gene expression and behaviour in the turbot, <italic>Scophthalmus maximus</italic>[J]. PLoS One, 2019, 14(7): e0219153. doi:  10.1371/journal.pone.0219153
    [9] SHIEH K R, YANG S C, LU X Y, et al. Diurnal rhythmic expression of the rhythm-related genes, rPeriod1, rPeriod2, and rClock, in the rat brain[J]. J Biomed Sci, 2005, 12(1): 209-217. doi:  10.1007/s11373-004-8176-6
    [10] DELAUNAY F, THISSE C, MARCHAND O, et al. An inherited functional circadian clock in zebrafish embryos[J]. Science, 2000, 289(5477): 297-300. doi:  10.1126/science.289.5477.297
    [11] KOBAYASHI Y, ISHIKAWA T, HIRAYAMA J, et al. Molecular analysis of zebrafish photolyase/cryptochrome family: two types of cryptochromes present in zebrafish[J]. Genes Cells, 2000, 5(9): 725-738. doi:  10.1046/j.1365-2443.2000.00364.x
    [12] SNCHEZ J A, MADRID J A, SNCHEZ-VZQUEZ F J. Molecular cloning, tissue distribution, and daily rhythms of expression of per1 gene in European sea bass (<italic>Dicentrarchus labrax</italic>)[J]. Chronobiol Int, 2010, 27(1): 19-33. doi:  10.3109/07420520903398633
    [13] POZO A, VERA L M, SNCHEZ J A, et al. Molecular cloning, tissue distribution and daily expression of cry1 and cry2 clock genes in European sea bass (<italic>Dicentrarchus labrax</italic>)[J]. Comp Biochem Physiol Part A, 2012, 163(34): 364-371.
    [14] DELGADO M J, ALONSO-GÓMEZ A L, GANCEDO B, et al. Serotonin N-acetyltransferase (NAT) activity and melatonin levels in the frog retina are not correlated during the seasonal cycle[J]. Gen Comp Endocrinol, 1993, 92(2): 143-150. doi:  10.1006/gcen.1993.1151
    [15] CERMAKIAN N, WHITMORE D, FOULKES NS, et al. Asynchronous oscillations of two zebrafish CLOCK partners reveal differential clock control and function[J]. Proc Natl Acad Sci USA, 2000, 97(8): 4339-4344. doi:  10.1073/pnas.97.8.4339
    [16] KANEKO M, HERNANDEZ-BORSETTI N, CAHILL G M. Diversity of zebrafish peripheral oscillators revealed by luciferase reporting[J]. Proc Natl Acad Sci USA, 2006, 103(39): 14614-14619. doi:  10.1073/pnas.0606563103
    [17] CAHILL G M. Clock mechanisms in zebrafish[J]. Cell Tissue Res, 2002, 309(1): 27-34. doi:  10.1007/s00441-002-0570-7
    [18] PEIRSON S N, BUTLER J N, DUFFIELD G E, et al. Comparison of clock gene expression in SCN, retina, heart, and liver of mice[J]. Biochem Biophys Res Commun, 2006, 351(4): 800-807. doi:  10.1016/j.bbrc.2006.10.118
    [19] BROWN S A, RIPPERGER J, KADENER S, et al. PERIOD1-associated proteins modulate the negative limb of the mammalian circadian oscillator[J]. Science, 2005, 308(5722): 693-696. doi:  10.1126/science.1107373
    [20] TOLOZA-VILLALOBOS J, ARROYO, OPAZO J C, et al. The circadian clock of teleost fish: a comparative analysis reveals distinct fates for duplicated genes[J]. J Mol Evol, 2015, 80(1): 57-64. doi:  10.1007/s00239-014-9660-x
    [21] BUHR E D, TAKAHASHI J. Molecular components of the Mammalian circadian clock[J]. Handb Exp Pharmacol, 2013(217): 3-27.
    [22] MORI K, MIYAZATO M, KANGAWA K. Neuromedin S: discovery and functions[J]. Results Probl Cell Differ, 2008, 46: 201-212.
    [23] FULLER P M, LU J, SAPER C B. Differential rescue of light- and foodentrainable circadian rhythms[J]. Science, 2008, 320(5879): 1074-1077. doi:  10.1126/science.1153277
    [24] DARDENTE H, CERMAKIAN N. Molecular circadian rhythms in central and peripheral clocks in mammals[J]. Chronobiol Int, 2007, 24(2): 195-213. doi:  10.1080/07420520701283693
    [25] HUANG T S, RUOFF P, FJELLDAL P G. Effect of continuous light on daily levels of plasma melatonin and cortisol and expression of clock genes in pineal gland, brain, and liver in atlantic salmon postsmolts[J]. Chronobiol Int, 2010, 27(9/10): 1715-1734.
    [26] DELAUNAY F, THISSE C, MARCHAND O, et al. An inherited functional circadian clock in zebrafish embryos[J]. Science, 2000, 289: 297-300. doi:  10.1126/science.289.5477.297
    [27] VELARDE E, HAQUE R, IUVONE P M, et al. Circadian clock genes of goldfish, Carassius auratus: cDNA cloning and rhythmic expression of period and cryptochrome transcripts in retina, liver, and gut[J]. J Biol Rhythms, 2009, 24: 104-113. doi:  10.1177/0748730408329901
    [28] DAVIE A, MINGHETTI M, MIGAUD H. Seasonal variations in clock-gene expression in Atlantic salmon (<italic>Salmo salar</italic>)[J]. Chronobiol Int, 2009, 26: 379-395. doi:  10.1080/07420520902820947
    [29] LAHIRI K, VALLONE D, GONDI S B, et al. Temperature regulates transcription in the zebrafish circadian clock[J]. PLoS Biol, 2005, 3: e351. doi:  10.1371/journal.pbio.0030351
    [30] PATIÑO M A, RODRÍGUEZ-ILLAMOLA A, CONDE-SIEIRA M, et al. Daily rhythmic expression patterns of <italic>clock</italic>1<italic>a</italic>, <italic>bmal</italic>1, and <italic>per</italic>1 genes in retina and hypothalamus of the rainbow trout, Oncorhynchus mykiss[J]. Chronobiol Int, 2011, 28(5): 381-9. doi:  10.3109/07420528.2011.566398
    [31] DALLMANN R, TOUMA C, PALME R, et al. Impaired daily glucocorticoid rhythm in Per1 (Brd) mice[J]. J Comp Physiol A, 2006, 192(7): 769-775. doi:  10.1007/s00359-006-0114-9
    [32] BURIOKA N, FUKUOKA Y, TAKATA, et al. Circadian rhythms in the CNS and peripheral clock disorders: function of clock genes: influence of medication for bronchial asthma on circadian gene[J]. J Pharmacol Sci, 2007, 103(2): 144-149. doi:  10.1254/jphs.FMJ06003X4
    [33] SUMOVÁ A, JÁ M, SLÁDEK M, et al. Clock gene daily profiles and their phase relationship in the rat suprachiasmatic nucleus are affected by photoperiod[J]. J Biol Rhythm, 2003, 18(2): 134-144. doi:  10.1177/0748730403251801
    [34] SHINOBU Y, MIWA W, NARITOSHI O, et al. Circadian clock genes and photoperiodism: comprehensive analysis of clock gene expression in the mediobasal hypothalamus, the suprachiasmatic nucleus, and the pineal gland of Japanese quail under various light schedules[J]. Endocrinology, 2003, 144(9): 3742-3748. doi:  10.1210/en.2003-0435
    [35] COSTA L S, SERRANO I, FRANCISCO J, et al. Circadian rhythms of clock gene expression in Nile tilapia (<italic>Oreochromis niloticus</italic>) central and peripheral tissues: influence of different lighting and feeding conditions[J]. J Comp Physiol B, 2016, 186(6): 775-785. doi:  10.1007/s00360-016-0989-x
    [36] STEINDAL F I A, WHITMORE I. Circadian clocks in fish: what have we learned so far?[J]. Biology (Basel), 2019, 8(1): 17.
    [37] CHEN S, REICHERT S, SINGH C, et al. Light-dependent regulation of sleep and wake states by prokineticin 2 in zebrafish[J]. Neuron, 2017, 95: 153-168. doi:  10.1016/j.neuron.2017.06.001
    [38] GANDHI A, MOSSER E, OIKONOMOU G, et al. Melatonin is required for the circadian regulation of slee[J]. Neuron, 2015, 95: 153-168.
    [39] BEN-MOSHE LIVNE Z, ALON S, VALLONE D, et al. Genetically blocking the zebrafish pineal clock affects circadian behavior[J]. PLoS Genet, 2016, 12: e1006445. doi:  10.1371/journal.pgen.1006445
    [40] YAMASHINA F, TAKEUCHI Y, FUKUNAGA K, et al. Daily expression of a clock gene in the brain and pituitary of the Malabar grouper (<italic>Epinephelus malabaricus</italic>)[J]. Gen Comp Endocrinol, 2019, 280: 9-14. doi:  10.1016/j.ygcen.2019.03.019
    [41] MOGI M, YOKOI H, SUZUKI T. Analyses of the cellular clock gene expression in peripheral tissue, caudal fin, in the Japanese flounder, <italic>Paralichthys olivaceus</italic>[J]. Gen Comp Endocrinol, 2017, 248: 97-105. doi:  10.1016/j.ygcen.2017.02.009
    [42] MARTINS R S, GOMEZ A, ZANUY S, et al. Photoperiodic modulation of circadian clock and reproductive axis gene expression in the pre-pubertal European sea bass brain[J]. PLoS One, 2015, 10(12): e0144158. doi:  10.1371/journal.pone.0144158
    [43] SÁNCHEZ-BRETAÑO A, BLANCO A M, ALONSO-GÓMEZ Á L, et al. Ghrelin induces clock gene expression in the liver of goldfish <italic>in vitro</italic> via protein kinase C and protein kinase A pathways[J]. J Exp Biol, 2017, 220(7): 1295-1306. doi:  10.1242/jeb.144253
  • [1] 孙永旭董宏标王文豪曹明段亚飞李华刘青松张家松 . 周期性缺氧应激对花鲈肠道菌群结构的影响. 南方水产科学, doi: 10.12131/20190021
    [2] 李富祥王鹏飞闫路路邱丽华 . 花鲈irak4基因cDNA的克隆与表达分析. 南方水产科学, doi: 10.3969/j.issn.2095-0780.2018.05.009
    [3] 葛婉仪雷丽娜蒋昕彧李霞孙兆盛王伟高谦 . 花鲈b2m基因cDNA的克隆及表达分析. 南方水产科学, doi: 10.12131/20200031
    [4] 刘春晓吕为群杨志刚陈阿琴 . TGF-β/Smad信号通路响应光周期变化参与调控斑马鱼卵巢发育. 南方水产科学, doi: 10.12131/20180286
    [5] 孙彩云董宏标王文豪李勇古群红段亚飞张家松许晓东 . 月桂酸单甘油酯对花鲈脂质代谢的影响. 南方水产科学, doi: 10.12131/20200130
    [6] 虞为杨育凯陈智彬林黑着黄小林周传朋杨铿曹煜成黄忠马振华李涛王珺王芸荀鹏伟黄倩倩于万峰 . 饲料中添加螺旋藻对花鲈生长性能、消化酶活性、血液学指标及抗氧化能力的影响. 南方水产科学, doi: 10.12131/20190002
    [7] 郭松傅明骏赵超李伟杰江世贵杨其彬周发林邱丽华 . 斑节对虾细胞周期蛋白T基因的克隆和表达分析. 南方水产科学, doi: 10.3969/j.issn.2095-0780.2016.01.009
    [8] 区又君李加儿吴勇刘楚吾 . 驼背鲈线粒体细胞色素b基因的序列分析. 南方水产科学,
    [9] 李胜杰樊佳佳姜鹏白俊杰孙建国吴建开费志平 . 大口黑鲈HSC70-1基因多态性及其双倍型与生长性状的关联分析. 南方水产科学, doi: 10.12131/20180086
    [10] 杨喜书章群余帆洋吕金磊底晓丹邵伟军黄镇宇卢丽锋 . 华南6水系与澜沧江-湄公河攀鲈线粒体ND2基因的遗传多样性分析. 南方水产科学, doi: 10.3969/j.issn.2095-0780.2017.03.006
    [11] 李加儿刘士瑞区又君张建生陶启友郭根喜 . 花尾胡椒鲷幼鱼的呼吸和排泄代谢. 南方水产科学, doi: 10.3969/j.issn.1673-2227.2009.02.006
    [12] 周发林黄建华邱丽华杨其彬江世贵 . 斑节对虾细胞周期蛋白B慢病毒载体的构建及对Hela 细胞增殖影响. 南方水产科学, doi: 10.3969/j.issn.2095-0780.2014.04.003
    [13] 朱爱意谢佳彦章韶兵 . 黑鲷耗氧率昼夜变化及与体重、水温的关系研究. 南方水产科学,
    [14] 于娜李加儿区又君范春燕张建生 . 盐度胁迫和昼夜变化对鲻鱼幼鱼消化酶活力的影响. 南方水产科学, doi: 10.3969/j.issn.2095-0780.2011.06.010
    [15] 李奕雯李卓佳曹煜成文国樑刘孝竹 . 对虾海水高密度养殖后期水质因子的昼夜变化规律. 南方水产科学, doi: 10.3969/j.issn.1673-2227.2010.06.005
    [16] 袁泉吕巍巍唐卫红岳蒙蒙周文宗 . 大鳞副泥鳅摄食节律及日摄食量研究. 南方水产科学, doi: 10.3969/j.issn.2095-0780.2018.05.015
    [17] 孙莘溢黄小林黄忠曹晓聪周婷林黑着舒琥虞为杨育凯李涛 . 卵形鲳鲹摄食、耗氧节律和胃肠排空时间的研究. 南方水产科学, doi: 10.12131/20190072
    [18] 区又君谢菁 . 驼背鲈的染色体核型分析. 南方水产科学,
    [19] 王静香李加儿1区又君1王永翠 . 驼背鲈血细胞的超微结构. 南方水产科学, doi: 10.3969/j.issn.2095-0780.2011.05.008
    [20] 张亚秋邓益琴冯娟毛灿胡建美苏友禄 . 哈维弧菌vhh基因缺失株的构建及其相关生物学特性研究. 南方水产科学, doi: 10.12131/20190211
  • 加载中
计量
  • 文章访问数:  230
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-22
  • 录用日期:  2020-07-21

花鲈垂体和下丘脑中生物钟基因在3种光周期下的表达节律分析

    作者简介:袁 满 (1996—),女,硕士,研究方向为鱼类繁殖生物学。E-mail: madisony@163.com
    通讯作者: 邱丽华, qiugroup_bio@outlook.com
  • 1. 上海海洋大学/水产科学国家级实验教学示范中心,上海 201306
  • 2. 中国水产科学研究院南海水产研究所/广东省渔业生态环境重点实验室,广州 510300
  • 3. 农业农村部部水生动物基因组学重点实验室,北京 100141

摘要: 花鲈 (Lateolabrax maculatus) 是中国重要的水产养殖鱼类,其繁殖活动受到光周期的调控。文章研究了3种光周期 (光暗比为16L∶8D、12L∶12D和8L∶16D) 条件下,7个重要生物钟基因 (Bmal2、Npas4、Per2、Cry1、Cry1a、Cry2) 及Timeless在花鲈垂体和下丘脑中的昼夜表达规律。结果表明,在12L∶12D条件下垂体中Per2、Cry1、Cry2、Cry1aTimeless表现出昼夜节律性,下丘脑中Per2、Cry2、Cry1、Timeless表现出昼夜节律性,相同基因在垂体和下丘脑两种组织中的昼夜节律不同,长光照或者短光照会改变昼夜节律的震荡强弱、也会改变峰值相位,部分基因在长光照或者短光照下会出现失去昼夜节律性的现象。

English Abstract

参考文献 (43)

返回顶部

目录

    /

    返回文章
    返回