留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

我国热带典型海草床潜在致病菌群落结构及其毒力基因丰度的空间特征

邓益琴 刘松林 冯娟 江志坚

邓益琴, 刘松林, 冯娟, 江志坚. 我国热带典型海草床潜在致病菌群落结构及其毒力基因丰度的空间特征[J]. 南方水产科学, 2020, 16(5): 1-9. doi: 10.12131/20200068
引用本文: 邓益琴, 刘松林, 冯娟, 江志坚. 我国热带典型海草床潜在致病菌群落结构及其毒力基因丰度的空间特征[J]. 南方水产科学, 2020, 16(5): 1-9. doi: 10.12131/20200068
Yiqin DENG, Songlin LIU, Juan FENG, Zhijian JIANG. Spatial characteristics of potential pathogenic bacteria community structure and their virulence gene abundance in typical tropical seagrass meadows of China[J]. South China Fisheries Science, 2020, 16(5): 1-9. doi: 10.12131/20200068
Citation: Yiqin DENG, Songlin LIU, Juan FENG, Zhijian JIANG. Spatial characteristics of potential pathogenic bacteria community structure and their virulence gene abundance in typical tropical seagrass meadows of China[J]. South China Fisheries Science, 2020, 16(5): 1-9. doi: 10.12131/20200068

我国热带典型海草床潜在致病菌群落结构及其毒力基因丰度的空间特征

doi: 10.12131/20200068
基金项目: 国家自然科学基金项目 (31902415, 41806147);广东省自然科学基金项目 (2019A1515011833);中国水产科学研究院南海水产研究所中央级公益性科研院所基本科研业务费专项资金资助 (2019TS04);中国水产科学研究院基本科研业务费专项资金 (2019ZD0707);广东省渔业生态环境重点实验室开放基金 (FEEL-2017-5)
详细信息
    作者简介:

    邓益琴 (1990—),女,博士,助理研究员,从事鱼类细菌病及防治技术研究。E-mail: yiqindd@126.com

    通讯作者:

    冯 娟 (1973—),女,博士,研究员,从事鱼类细菌病及防治技术研究。E-mail: jannyfeng@163.com

  • 中图分类号: Q 89

Spatial characteristics of potential pathogenic bacteria community structure and their virulence gene abundance in typical tropical seagrass meadows of China

  • 摘要: 该研究利用16S rRNA扩增子测序技术分析了中国热带 (新村、黎安、潭门) 典型海草床水体潜在致病菌的群落结构,通过选择性培养基分析可培养弧菌和肠球菌的丰度,进一步利用定量PCR分析弧菌 (Vibrio) 和肠球菌 (Enterococcus) 典型毒力基因含量。结果发现,新村、黎安海草床水体潜在致病菌与潭门有显著差异;可培养弧菌和肠球菌及其典型毒力基因vhhtoxRaspAespgelE均呈现新村>黎安>潭门的趋势,而弧菌典型毒力基因ctxAtlhtrhvvp呈现黎安>新村>潭门的趋势。新村和黎安较高的人类活动强度如营养负荷,可能是导致其海草床致病菌和毒力基因丰度较高的重要原因,而新村和黎安的差异可能与不同的人类活动方式有关。
  • 图  1  基于Bray-Curtis距离矩阵的潜在致病菌群落的主成分分析

    Figure  1.  Principal co-ordinates analysis (pCoA) ordination of potential pathogenic microbial community data based on Bray-Curtis distance

    图  2  丰度前6的潜在致病菌属对不同海草床水体潜在致病菌群落结构的差异贡献率

    Figure  2.  Dissimilarity contribution rate of top six potential pathogenic genera to community structure of potential pathogenic bacteria in different seagrass meadows

    图  3  不同海草床水体可培养弧菌 (a) 和肠球菌 (b) 丰度

    Figure  3.  Abundance of Vibrio (a) and Enterococcus (b) in different seagrass meadows

    图  4  弧菌典型毒力基因ctxAtlhtrhvvp在不同海草床水体中的相对含量

    Figure  4.  Relative abundance of Vibrio typical virulence genes ctxA, tlh, trh and vvp in different seagrass meadows

    图  5  弧菌典型毒力基因vhhtoxRaspA 在不同海草床水体中的相对含量

    Figure  5.  Relative abundance of Vibrio typical virulence genes vhh , toxR and aspA in different seagrass meadows

    图  6  肠球菌典型毒力基因espgelE在不同海草床水体中的相对含量

    Figure  6.  Relative abundance of Enterococcus typical virulence genes esp and gelE in different seagrass meadows

    表  1  本研究所用引物序列

    Table  1.   Primer sequences used in this study

    引物名称
    Primer name
    引物序列
    Primer sequence
    基因描述
    Gene characterization
    16S rRNA-F TGTGTAGCGGTGAAATGCG 内参
    16S rRNA-R CATCGTTTACGGCGTGGAC 16S核糖体基因
    ctxA-F TTTGTTAGGCACGATGATGGAT 霍乱弧菌
    ctxA-R ACCAGACAATATAGTTTGACCCACTAAG 霍乱毒素A亚基基因
    tlh-F GAAAGCGCCTCAGTTTAAG 副溶血弧菌
    tlh-R ACTCGTTCATCTCAAGCACT 不耐热溶血毒素基因
    trh-F GACTAYTGGACAAACCGAAAC 副溶血弧菌耐热性溶血毒素
    trh-R ACYGTYATATAGGCGCTTAACC 相关的溶血毒素基因
    vvp-F TCTCGGTCTTATGCTTGTTGCA 创伤弧菌
    vvp-R TCGGAGACGGACACCATTTC 金属蛋白酶基因
    vhh-F GGGCAGAAAATCCAGACGGC 哈维弧菌
    vhh-R GTAGGAGAAACGGTTATCGGCTGC 溶血毒素基因
    toxR-F CGCCAGCAGTGGAGTTAGAA 溶藻弧菌
    toxR-R TAATGACACGCGGTAGCCAG 转录调控因子基因
    aspA-F GAAGGCGGTCAGCTACAGC 弧菌
    aspA-R GTTGTAAACGTAGTTTTCGCAAACTTC 碱性丝氨酸蛋白酶基因
    esp-F GCGGGAACAGGTCACAAAGC 肠球菌
    esp-R TTCATCTTTCGCGATTAATTTACTTGAATC 表面蛋白基因
    gelE-F ACACCAACAGGAAAAACGTATGC 肠球菌
    gelE-R TTCATTCAAGGCACCTGATTGTC 明胶酶基因
    下载: 导出CSV

    表  2  属水平海草床水体各潜在致病菌的相对丰度

    Table  2.   Relative abundance of each potential pathogens of seagrass meadows at genus level

    分类系统
    Taxonomy
    新村
    Xincun
    黎安
    Li'an
    潭门
    Tanmen
    感染有机体
    Infection organism
    参考文献
    References
    弓形杆菌属 Arcobacter 22.96±19.39A 11.50±4.78A 2.29±0.36A 人、鱼 [23]
    拟杆菌属 Bacteroides 7.26±1.01A 9.02±1.02A 14.37±7.90A [24]
    肠球菌属 Enterococcus 2.39±0.37A 2.43±0.40A 2.63±0.44A 人、鱼 [24]
    嗜血杆菌属 Haemophilus 1.77±0.51A 1.86±0.21A 2.48±0.21A [24]
    弧菌属 Vibrio 7.73±2.59A 5.58±1.21A 6.92±2.06A 人、鱼、无脊椎动物 [25]
    黄杆菌属 Tenacibaculum 6.44±3.50A 8.97±3.24A 0.29±0.23A 人、鱼 [26]
    假交替单胞菌属 Pseudoalteromonas 0.72±0.46A 0.81±0.20A 12.17±3.91B 无脊椎动物 [27]
    链球菌属 Streptococcus 0.67±0.25A 0.95±0.19A 0.76±0.30A 人、鱼 [28]
    发光杆菌属 Photobacterium 1.91±1.72A 0.57±0.28A 2.63±1.60A 人、鱼 [29]
    芽孢杆菌属 Bacillus 0.14±0.14A 0.00±0.00A 2.00±2.00A 人、鱼、无脊椎动物 [26, 30]
    铜绿色假单胞菌属 Pseudomonas 0.10±0.10A 0.91±0.84A 0.00±0.00A 人、鱼、无脊椎动物 [30]
    分枝杆菌属 Mycobacterium 0.14±0.14A 0.67±0.61A 0.53±0.26A 人、鱼、哺乳动物 [31]
    噬细胞菌属 Cytophaga 1.29±1.29A 0.00±0.00A 0.00±0.00A 无脊椎动物 [32]
    盐单胞菌属 Halomonas 0.43±0.25A 0.14±0.14A 0.29±0.12A 人、鱼 [33]
    黄杆菌属 Flavobacterium 0.00±0.00A 0.53±0.32A 0.10±0.10A [34]
    军团菌属 Legionella 0.29±0.17A 0.00±0.00A 0.00±0.00A [35]
    弗朗西斯氏菌属 Francisella 0.05±0.05A 0.00±0.00A 0.10±0.10A 人、鱼 [36]
    微球菌属 Micrococcus 0.14±0.14A 0.00±0.00A 0.00±0.00A 无脊椎动物 [37]
    嗜冷杆菌属 Psychrobacter 0.00±0.00A 0.10±0.10A 0.00±0.00A [38]
    注:单因素方差分析结果,其中不同的字母(A, B) 代表差异性显著,相同的字母代表差异性不显著 Note: The results of One-way ANOVA. Different letters (A, B) indicate significant difference, and the same letters indicate no significant difference.
    下载: 导出CSV
  • [1] DUARTE C M, MIDDELBURG J J, CARACO N. Major role of marine vegetation on the oceanic carbon cycle[J]. Biogeosciences, 2005, 2(1): 1-8. doi:  10.5194/bg-2-1-2005
    [2] HECK K L, HAYS G, ORTH R J. Critical evaluation of the nursery role hypothesis for seagrass meadows[J]. Mar Ecol Prog, 2003, 253: 123-136. doi:  10.3354/meps253123
    [3] STEWART J R, GAST R J, FUJIOKA R S, et al. The coastal environment and human health: microbial indicators, pathogens, sentinels and reservoirs[J]. Environ Health-Glob, 2008, 7(Sup 2): S3.
    [4] LAMB J B, van de WATER, JEROEN A J M, et al. Seagrass ecosystems reduce exposure to bacterial pathogens of humans, fishes, and invertebrates[J]. Science, 2017, 355(6326): 731-733. doi:  10.1126/science.aal1956
    [5] ARUMUGAM R, ANANTHARAMAN P. Antibacterial potential of three seagrasses against human pathogens[J]. Asian Pac J Trop Med, 2010(11): 890-893.
    [6] DUARTE C M. Reviews and syntheses: hidden forests, the role of vegetated coastal habitats in the ocean carbon budget[J]. Biogeosciences, 2017, 14(2): 301-310. doi:  10.5194/bg-14-301-2017
    [7] COUPLAND G T, WALKER D D I. High metabolic rates in beach cast communities[J]. Ecosystems, 2007, 10(8): 1341-1350. doi:  10.1007/s10021-007-9102-3
    [8] PATIL R, EYASEKARAN G J, SHANMUGAM S A. Control of bacterial pathogens, associated with fish diseases, by antagonistic marine actinomycetes isolated from marine sediments[J]. Ind J Geo-Mar Sci, 2011, 30(4): 324-267. doi:  10.1006/jmsc.2001.1116
    [9] ZHU H Y, LI X W, ZHENG X Y. Sediment composition influences spatial variation in the abundance of human pathogen indicator bacteria within an estuarine environment[J]. Biomed Res Int, 2017: 2796054.
    [10] SHENG H, ZHOU P, ZHANG Y, et al. Loss of labile organic carbon from subsoil due to land-use changes in subtropical China[J]. Soil Biol Biochem, 2015, 88: 148-157. doi:  10.1016/j.soilbio.2015.05.015
    [11] ROLL B M, FUJIOKA R S. Sources of faecal indicator bacteria in a brackish, tropical stream and their impact on recreational water quality[J]. Water Sci Technol, 1997, 35(11/12): 179-186.
    [12] FUJIOKA R, SIAN-DENTON C, BORJA M, et al. Soil: the environmental source of Escherichia coli and Enterococci in Guam's streams[J]. J Appl Microbiol, 2010, 85(S1): 83-89.
    [13] WAYCOTT M, DUARTE C M, CARRUTHERS T J B, et al. Accelerating loss of seagrasses across the globe threatens coastal ecosystems[J]. Proc Natl Acad Sci USA, 2009, 106(30): 12377-12381. doi:  10.1073/pnas.0905620106
    [14] 周立柱, 杨顶田, 尹小青. 海南新村港和黎安港非点源污染负荷估算[J]. 生态科学, 2018, 37(3): 11-20.
    [15] ZHANG X, ZHAO C, YU S, et al. Rhizosphere microbial community structure are selected by habitats but not plant species in two  tropical  seagrass  beds[J].  Fronit  Mocrobiol,  2020, 11. doi: 10.3389/fmicb.2020.00161.
    [16] MARTIN M. Cutadapt removes adapter sequences from high-throughput sequencing reads[J]. Embnet J, 2011, 17(1): 10-12. doi:  10.14806/ej.17.1.200
    [17] KNIGHT R. UCHIME improves sensitivity and speed of chimera detection[J]. Bioinformatics, 2011, 27(16): 2194-2200. doi:  10.1093/bioinformatics/btr381
    [18] EDGAR R C. UPARSE: highly accurate OTU sequences from microbial amplicon reads[J]. Nat Methods, 2013, 10(10): 996-998. doi:  10.1038/nmeth.2604
    [19] CHRISTIAN Q, ELMAR P, PELIN Y, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools[J]. Nucleic Acids Res, 2013, 41(D1): D590-D596.
    [20] UCHIYAMA H. Distribution of Vibrio species isolated from aquatic environments with TCBS agar[J]. Environ Health Prev, 2000, 4(4): 199-204. doi:  10.1007/BF02931258
    [21] EMBERGER O, PAVLOVÃ M. Suitability of Slanetz-Bartley esculine sodium azide media for determination of Enterococci[J]. Epidemiol Mikrobi Im, 1971, 20(5): 262-269.
    [22] ANDERSON M J, GORLEY R N, CLARKE K R. PERMANOVA for PRIMER: guide to software and statistical methods[M]. Plymouth, UK: PRIMER-E Ltd., 2008: 105-121.
    [23] COLLADO L, INZA I, GUARRO J, et al. Presence of Arcobacter spp. in environmental waters correlates with high levels of fecal pollution[J]. Environ Microbiol, 2008, 10(6): 1635-1640. doi:  10.1111/j.1462-2920.2007.01555.x
    [24] HAAGSMA J. Pathogenic anaerobic bacteria and the environment[J]. Rev Sci Tech, 1991, 10(3): 749-764. doi:  10.20506/rst.10.3.569
    [25] JANDA J M. Current perspectives on the epidemiology and pathogenesis of clinically significant Vibrio spp.[J]. Clin Microbiol Rev, 1988, 1(3): 245-267. doi:  10.1128/CMR.1.3.245
    [26] DAVID P P, AURELIE L, GHISLAINE M, et al. The complete genome sequence of the fish pathogen Tenacibaculum maritimum provides insights into virulence mechanisms[J]. Front Microbiol, 2017, 8: 1542. doi: 10.3389/fmicb.2017.01542.
    [27] CHISTOSERDOV A Y, GUBBALA S L, SMOLOWITZ R, et al. A microbiological assessment of epizootic shell disease in the American lobster indicates its strictly dermal etiology[M]. Boston: Boston University of Massachusetts, 2005: 12-20.
    [28] DIEDRICH L K, MANBY C L. Haemophilus species as a urinary tract pathogen[J]. Lab Med, 2017, 48(1): e1-e3. doi:  10.1093/labmed/lmw063
    [29] RIVAS A J, VENCES A, HUSMANN M, et al. The Photobacterium damselae subsp. damselae major virulence factors Dly, HlyApl and HlyAch are secreted via the type II secretion system[J]. Infect Immun, 2015, 83(4): 1246-1256. doi:  10.1128/IAI.02608-14
    [30] WEBSTER N S. Sponge disease: a global threat?[J]. Environ Microbiol, 2007, 9(6): 1363-1375. doi:  10.1111/j.1462-2920.2007.01303.x
    [31] WATRAL V, KENT M L. Pathogenesis of Mycobacterium spp. in zebrafish (Danio rerio) from research facilities[J]. Comp Biochem Physiol C, 2007, 145(1): 55-60. doi:  10.1016/j.cbpc.2006.06.004
    [32] DALSGAARD I. Virulence mechanisms in Cytophaga psychrophila and other Cytophaga-like bacteria pathogenic for fish[J]. Ann Rev Fish Dis, 1993, 3: 127-144. doi:  10.1016/0959-8030(93)90032-7
    [33] STEVENS D A, HAMILTON J R, JOHNSON N, et al. Halomonas, a newly recognized human pathogen causing infections and contamination in a dialysis center three new species[J]. Medicine, 2009, 88(4): 244-249. doi:  10.1097/MD.0b013e3181aede29
    [34] FARKAS J. Filamentous Flavobacterium sp. isolated from fish with gill diseases in cold water[J]. Aquaculture, 1985, 44(1): 1-10. doi:  10.1016/0044-8486(85)90037-7
    [35] JOHNSON D I. Legionella spp. [M]. New York: Springer International Publishing AG, 2018:279-287
    [36] MAUEL M J, SOTO E, MORALIS J A, et al. A Piscirickettsiosis-like syndrome in cultured nile tilapia in Latin America with Francisella spp. as the pathogenic agent[J]. J Aquat Anim Health, 2007, 19(1): 27-34. doi:  10.1577/H06-025.1
    [37] VALDIVIA-ARENAS M A. Bloodstream infections due to Micrococcus spp and intravenous epoprostenol[J]. Infect Cont Hosp Ep, 2009, 30(12): 1237-1237.
    [38] BOWMAN J P. The Genus, Psychrobacter[M]. New York: Springer, 2006: 920-930.
    [39] LIU S, JIANG Z, DENG Y, et al. Effects of nutrient loading on sediment bacterial and pathogen communities within seagrass meadows[J]. Microbiol Open, 2018, 7(5): e00600. doi:  10.1002/mbo3.600
    [40] GHADERPOUR A, NASORI K N M, CHEW L L, et al. Detection of multiple potentially pathogenic bacteria in Matang mangrove estuaries, Malaysia[J]. Mar Pollut Bull, 2014, 83(1): 324-330. doi:  10.1016/j.marpolbul.2014.04.029
    [41] PERKINS T L, KATIE C, BAAS J H, et al. Sediment composition influences spatial variation in the abundance of human pathogen indicator bacteria within an estuarine environment[J]. PLoS One, 2014, 9(11): e112951. doi:  10.1371/journal.pone.0112951
    [42] AGAWIN N S R, DUARTE C M. Evidence of direct particle trapping by a tropical seagrass meadow[J]. Estuar Coast, 2002, 25(6): 1205-1209. doi:  10.1007/BF02692217
    [43] MAUGERI T L, CARBONE M, FERA M T, et al. Distribution of potentially pathogenic bacteria as free living and plankton associated in a marine coastal zone[J]. J Appl Microbiol, 2004, 97(2): 354-361. doi:  10.1111/j.1365-2672.2004.02303.x
    [44] BAFFONE W, PIANETTI A, BRUSCOLINI F, et al. Occurrence and expression of virulence-related properties of Vibrio species isolated from widely consumed seafood products[J]. Int J Food Microbiol, 2000, 54(1/2): 9-18.
    [45] JOANN M B, DAVID A T, BRANT W T. Seagrasses and eutrophication[J]. J Exp Mar Biol Ecol, 2007, 50(1/2): 46-72.
    [46] ALLISON L S, JESSICA K C W, SUSANNE E C. Regional-scale effects of eutrophication on ecosystem structure and services of seagrass beds[J]. Limnol Oceanogr, 2012, 57(5): 1389-1402. doi:  10.4319/lo.2012.57.5.1389
    [47] MICHAEL J S, JOHN C B, MAGGY M N, et al. Algae as reservoirs for coral pathogens[J]. PLoS One, 2013, 8(7): e69717. doi:  10.1371/journal.pone.0069717
    [48] EGIDIUS E. Vibriosis: pathogenicity and pathology. A review[J]. Aquaculture, 1987, 67(1/2): 15-28.
    [49] 杨青, 俞云松, 倪语星, 等. 2009年中国CHINET肠球菌属细菌耐药性监测[J]. 中国感染与化疗杂志, 2010, 10(6): 421-425.
    [50] FISHER K, PHILLIPS C. The ecology, epidemiology and virulence of Enterococcus[J]. Microbiology, 2009, 155(6): 1749-1757. doi:  10.1099/mic.0.026385-0
    [51] YASUYOSHI I K E. Pathogenicity of Enterococci[J]. Nihon Saikingaku Zasshi, 2017, 72(2): 189-211. doi:  10.3412/jsb.72.189
    [52] HSIEH J L, FRIES J S, NOBLE R T. Vibrio and phytoplankton dynamics during the summer of 2004 in a eutrophying estuary[J]. Ecol Appl, 2007, 17(5): S102-S109.
    [53] 吴建平, 蔡创华, 周毅频, 等. 大亚湾网箱养殖水体弧菌种类组成及变化[J]. 湛江海洋大学学报, 2006, 26(4): 46-52.
    [54] AUSTIN B. Vibrios as causal agents of zoonoses[J]. Vet Microbiol, 2010, 140(3/4): 310-317.
    [55] REILLY G D, REILLY C A, SMITH E G, et al. Vibrio alginolyticus-associated wound infection acquired in British waters, Guernsey, July 2011[J]. Euro Surveill, 2011, 16(42): 321-326.
    [56] LIU S, JIANG Z, ZHANG J, et al. Effect of nutrient enrichment on the source and composition of sediment organic carbon in tropical seagrass beds in the South China Sea[J]. Mar Pollut Bull, 2016, 110(1): 274-280. doi:  10.1016/j.marpolbul.2016.06.054
    [57] JOHNSON P T J, CARPENTER S R. Influence of eutrophication on disease in aquatic ecosystems: patterns, processes, and predictions. Infectious disease ecology: the effects of ecosystems on disease and of disease on ecosystems[M]. Princeton: Princeton University Press, 2010: 71-99.
    [58] GLADSTONE-GALLAGHER R V, HUGHES R W, DOUGLAS E J, et al. Biomass-dependent seagrass resilience to sediment eutrophication[J]. J Exp Mar Biol Ecol, 2008, 501: 54-64. doi:  10.1016/j.jembe.2018.01.002
    [59] GACIA E, DUARTE C M, MARBÀ N, et al. Sediment deposition and production in SE-Asia seagrass meadows[J]. Estuar Coast Shelf S, 2003, 56(5/6): 909-919.
    [60] MARBÀ N, ARIAS-ORTIZ A, MASQUÉ P, et al. Impact of seagrass loss and subsequent revegetation on carbon sequestration and stocks[J]. J Ecol, 2015, 103(2): 296-302. doi:  10.1111/1365-2745.12370
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  2025
  • HTML全文浏览量:  1115
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-07
  • 修回日期:  2020-05-08
  • 网络出版日期:  2020-10-09
  • 刊出日期:  2020-10-05

目录

    /

    返回文章
    返回