留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

我国热带典型海草床潜在致病菌群落结构及其毒力基因丰度的空间特征

邓益琴 刘松林 冯娟 江志坚

引用本文:
Citation:

我国热带典型海草床潜在致病菌群落结构及其毒力基因丰度的空间特征

    作者简介: 邓益琴 (1990—),女,博士,助理研究员,从事鱼类细菌病及防治技术研究。E-mail:yiqindd@126.com;
    通讯作者: 冯娟, jannyfeng@163.com
  • 中图分类号: Q 89

Spatial characteristics of potential pathogenic bacteria community structure and their virulence gene abundance in typical tropical seagrass meadows of China

    Corresponding author: Juan FENG, jannyfeng@163.com ;
  • CLC number: Q 89

  • 摘要: 该研究利用16S rRNA扩增子测序技术分析了我国热带 (新村、黎安、潭门) 典型海草床水体潜在致病菌的群落结构,通过选择性培养基分析可培养弧菌和肠球菌的丰度,进一步利用定量PCR分析弧菌 (Vibrio) 和肠球菌 (Enterococcus) 典型毒力基因含量。结果发现,新村、黎安海草床水体潜在致病菌与潭门有显著差异;可培养弧菌和肠球菌及其典型毒力基因vhhtoxRaspAespgelE均呈现新村>黎安>潭门的趋势,而弧菌典型毒力基因ctxAtlhtrhvvp呈现黎安>新村>潭门的趋势。新村和黎安的较高人类活动强度如营养负荷,可能是导致其海草床致病菌和毒力基因丰度较高的重要原因,而新村和黎安的差异可能与不同的人类活动方式有关。
  • 图 1  基于Bray-Curtis距离矩阵的潜在致病菌群落的主成分分析

    Figure 1.  Principal co-ordinates analysis (pCoA) ordination of potential pathogenic microbial community data based on Bray-Curtis distance

    图 2  丰度前6的潜在致病菌属对不同海草床水体潜在致病菌群落结构的差异贡献率

    Figure 2.  Contribute dissimilarity of top six potential pathogenic genera to community structure of potential pathogenic bacteria in different seagrass meadows waters

    图 3  不同海草床水体可培养弧菌 (A) 和肠球菌 (B) 丰度

    Figure 3.  Abundance of Vibrio (A) and Enterococcus (B) in different seagrass meadows

    图 4  弧菌典型毒力基因ctxA (A)、tlh (B)、trh (C) 和vvp (D) 在不同海草床水体中的相对含量

    Figure 4.  Relative abundance of Vibrio typical virulence genes ctxA (A), tlh (B), trh (C) and vvp (D) in different seagrass meadows

    图 5  弧菌典型毒力基因vhh (A)、toxR (B) 和aspA (C) 在不同海草床水体中的相对含量

    Figure 5.  Relative abundance of Vibrio typical virulence genes vhh (A), toxR (B) and aspA (C) in different seagrass meadows

    图 6  肠球菌典型毒力基因esp (A) 和gelE (B) 在不同海草床水体中的相对含量

    Figure 6.  Relative abundance of Enterococcus typical virulence genes esp (A) and gelE (B) in different seagrass meadows

    表 1  本研究所用引物序列

    Table 1.  Primer sequences used in this study

    引物名称
    Primer name
    引物序列
    Primer sequence
    基因描述
    Gene characterization
    16S rRNA-F TGTGTAGCGGTGAAATGCG 内参
    16S rRNA-R CATCGTTTACGGCGTGGAC 16S核糖体基因
    ctxA-F TTTGTTAGGCACGATGATGGAT 霍乱弧菌
    ctxA-R ACCAGACAATATAGTTTGACCCACTAAG 霍乱毒素A亚基基因
    tlh-F GAAAGCGCCTCAGTTTAAG 副溶血弧菌
    tlh-R ACTCGTTCATCTCAAGCACT 不耐热溶血毒素基因
    trh-F GACTAYTGGACAAACCGAAAC 副溶血弧菌耐热性溶血毒素
    trh-R ACYGTYATATAGGCGCTTAACC 相关的溶血毒素基因
    vvp-F TCTCGGTCTTATGCTTGTTGCA 创伤弧菌
    vvp-R TCGGAGACGGACACCATTTC 金属蛋白酶基因
    vhh-F GGGCAGAAAATCCAGACGGC 哈维弧菌
    vhh-R GTAGGAGAAACGGTTATCGGCTGC 溶血毒素基因
    toxR-F CGCCAGCAGTGGAGTTAGAA 溶藻弧菌
    toxR-R TAATGACACGCGGTAGCCAG 转录调控因子基因
    aspA-F GAAGGCGGTCAGCTACAGC 弧菌
    aspA-R GTTGTAAACGTAGTTTTCGCAAACTTC 碱性丝氨酸蛋白酶基因
    esp-F GCGGGAACAGGTCACAAAGC 肠球菌
    esp-R TTCATCTTTCGCGATTAATTTACTTGAATC 表面蛋白基因
    gelE-F ACACCAACAGGAAAAACGTATGC 肠球菌
    gelE-R TTCATTCAAGGCACCTGATTGTC 明胶酶基因
    下载: 导出CSV

    表 2  属水平海草床水体各潜在致病菌的相对丰度

    Table 2.  Relative abundance of each potential pathogens of seagrass meadows water at genus level

    分类系统
    Taxonomy
    新村
    Xincun
    黎安
    Li'an
    潭门
    Tanmen
    感染有机体
    Infection organism
    参考文献
    References
    弓形杆菌属 Arcobacter spp. 22.96±19.39A 11.50±4.78A 2.29±0.36A 人,鱼 [23]
    拟杆菌属 Bacteroides spp. 7.26±1.01A 9.02±1.02A 14.37±7.90A [24]
    弧菌属 Vibrio spp. 7.73±2.59A 5.58±1.21A 6.92±2.06A 人,鱼,无脊椎动物 [25]
    黄杆菌属 Tenacibaculum spp. 6.44±3.50A 8.97±3.24A 0.29±0.23A 人,鱼 [26]
    假交替单胞菌属 Pseudoalteromonas spp. 0.72±0.46A 0.81±0.20A 12.17±3.91B 无脊椎动物 [27]
    肠球菌属 Enterococcus spp. 2.39±0.37A 2.43±0.40A 2.63±0.44A 人,鱼 [24]
    嗜血杆菌属 Haemophilus spp. 1.77±0.51A 1.86±0.21A 2.48±0.21A [24]
    发光杆菌属 Photobacterium spp. 1.91±1.72A 0.57±0.28A 2.63±1.60A 人,鱼 [29]
    链球菌属 Streptococcus spp. 0.67±0.25A 0.95±0.19A 0.76±0.30A 人,鱼 [28]
    芽孢杆菌属 Bacillus spp. 0.14±0.14A 0.00±0.00A 2.00±2.00A 人,鱼,无脊椎动物 [26, 30]
    分枝杆菌属 Mycobacterium spp. 0.14±0.14A 0.67±0.61A 0.53±0.26A 人,鱼,哺乳动物 [31]
    噬细胞菌属 Cytophaga spp. 1.29±1.29A 0.00±0.00A 0.00±0.00A 无脊椎动物 [32]
    铜绿色假单胞菌属 Pseudomonas spp. 0.10±0.10A 0.91±0.84A 0.00±0.00A 人,鱼,无脊椎动物 [30]
    盐单胞菌属 Halomonas spp. 0.43±0.25A 0.14±0.14A 0.29±0.12A 人,鱼 [33]
    黄杆菌属 Flavobacterium spp. 0.00±0.00A 0.53±0.32A 0.10±0.10A [34]
    军团菌属 Legionella spp. 0.29±0.17A 0.00±0.00A 0.00±0.00A [35]
    弗朗西斯氏菌属 Francisella spp. 0.05±0.05A 0.00±0.00A 0.10±0.10A 人,鱼 [36]
    微球菌属 Micrococcus spp. 0.14±0.14A 0.00±0.00A 0.00±0.00A 无脊椎动物 [37]
    嗜冷杆菌属 Psychrobacter spp. 0.00±0.00A 0.10±0.10A 0.00±0.00A [38]
    下载: 导出CSV
  • [1] DUARTE C M, MIDDELBURG J J, CARACO N. Major role of marine vegetation on the oceanic carbon cycle[J]. Biogeosciences, 2005, 2(1): 1-8. doi:  10.5194/bg-2-1-2005
    [2] HECK K L, HAYS G, ORTH R J. Critical evaluation of the nursery role hypothesis for seagrass meadows[J]. Mar Ecol Prog, 2003, 253: 123-136. doi:  10.3354/meps253123
    [3] STEWART J R, GAST R J, FUJIOKA R S, et al. The coastal environment and human health: microbial indicators, pathogens, sentinels and reservoirs[J]. Environ Health-Glob, 2008, 7(Sup 2): S3.
    [4] LAMB J B, van de WATER, JEROEN A J M, et al. Seagrass ecosystems reduce exposure to bacterial pathogens of humans, fishes, and invertebrates[J]. Science, 2017, 355(6326): 731-733. doi:  10.1126/science.aal1956
    [5] ARUMUGAM R, ANANTHARAMAN P. Antibacterial potential of three seagrasses against human pathogens[J]. Asian Pac J Trop Med, 2010(11): 890-893.
    [6] DUARTE C M. Reviews and syntheses: hidden forests, the role of vegetated coastal habitats in the ocean carbon budget[J]. Biogeosciences, 2017, 14(2): 301-310. doi:  10.5194/bg-14-301-2017
    [7] COUPLAND G T, WALKER D D I. High metabolic rates in beach cast communities[J]. Ecosystems, 2007, 10(8): 1341-1350. doi:  10.1007/s10021-007-9102-3
    [8] GHADERPOUR A, NASORI K N M, CHEW L L, et al. Detection of multiple potentially pathogenic bacteria in Matang mangrove estuaries, Malaysia[J]. Mar Pollut Bull, 2014, 83(1): 324-330. doi:  10.1016/j.marpolbul.2014.04.029
    [9] PERKINS T L, KATIE C, BAAS J H, et al. Sediment composition influences spatial variation in the abundance of human pathogen indicator bacteria within an estuarine environment[J]. PloS One, 2014, 9(11): e112951. doi:  10.1371/journal.pone.0112951
    [10] SHENG H, ZHOU P, ZHANG Y, et al. Loss of labile organic carbon from subsoil due to land-use changes in subtropical China[J]. Soil Biol Biochem, 2015, 88: 148-157. doi:  10.1016/j.soilbio.2015.05.015
    [11] ROLL B M, FUJIOKA R S. Sources of faecal indicator bacteria in a brackish, tropical stream and their impact on recreational water quality[J]. Water Sci Technol, 1997, 35(11/12): 179-186.
    [12] FUJIOKA R, SIAN-DENTON C, BORJA M, et al. Soil: the environmental source of Escherichia coli and Enterococci in Guam’s streams[J]. J Appl Microbiol, 2010, 85(S1): 83-89.
    [13] WAYCOTT M, DUARTE C M, CARRUTHERS T J B, et al. Accelerating loss of seagrasses across the globe threatens coastal ecosystems[J]. Proc Natl Acad Sci USA, 2009, 106(30): 12377-12381. doi:  10.1073/pnas.0905620106
    [14] 周立柱, 杨顶田, 尹小青. 海南新村港和黎安港非点源污染负荷估算[J]. 生态科学, 2018, 37(3): 11-20.
    [15] ZHANG X, ZHAO C, YU S, et al. Rhizosphere microbial community structure are selected by habitats but not plant species in two tropical seagrass beds[J]. Fronit Mocrobiol, 2020, 11: 161. doi:  10.3389/fmicb.2020.00161
    [16] MARTIN M. Cutadapt removes adapter sequences from high-throughput sequencing reads[J]. Embnet J, 2011, 17(1): 10-12. doi:  10.14806/ej.17.1.200
    [17] KNIGHT R. UCHIME improves sensitivity and speed of chimera detection[J]. Bioinformatics, 2011, 27(16): 2194-2200. doi:  10.1093/bioinformatics/btr381
    [18] EDGAR R C. UPARSE: highly accurate OTU sequences from microbial amplicon reads[J]. Nat Methods, 2013, 10(10): 996-998. doi:  10.1038/nmeth.2604
    [19] CHRISTIAN Q, ELMAR P, PELIN Y, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools[J]. Nucleic Acids Res, 2013, 41(D1): D590-D596.
    [20] UCHIYAMA H. Distribution of Vibrio species isolated from aquatic environments with TCBS agar[J]. Environ Health Prev, 2000, 4(4): 199-204. doi:  10.1007/BF02931258
    [21] EMBERGER O, PAVLOVÃ M. Suitability of Slanetz-Bartley esculine sodium azide media for determination of Enterococci[J]. Epidemiol Mikrobi Im, 1971, 20(5): 262-269.
    [22] CLARKE K, GORLEY R. Primer v6: User Manual/Tutorial[M]. Plymouth, UK: PRIMER-E Ltd., 2006.
    [23] COLLADO L, INZA I, GUARRO J, et al. Presence of Arcobacter spp. in environmental waters correlates with high levels of fecal pollution[J]. Environ Microbiol, 2008, 10(6): 1635-1640. doi:  10.1111/j.1462-2920.2007.01555.x
    [24] HAAGSMA J. Pathogenic anaerobic bacteria and the environment[J]. Rev Sci Tech, 1991, 10(3): 749-764. doi:  10.20506/rst.10.3.569
    [25] JANDA J M. Current perspectives on the epidemiology and pathogenesis of clinically significant Vibrio spp[J]. Clin Microbiol Rev, 1988, 1(3): 245-267. doi:  10.1128/CMR.1.3.245
    [26] DAVID P P, AURELIE L, GHISLAINE M, et al. The complete genome sequence of the fish pathogen Tenacibaculum maritimum provides insights into virulence mechanisms[J]. Front Microbiol, 2017, 8: 1542. doi:  10.3389/fmicb.2017.01542
    [27] CHISTOSERDOV A Y, GUBBALA S L, SMOLOWITZ R, et al. A microbiological assessment of epizootic shell disease in the American lobster indicates its strictly dermal etiology[M]. Boston, MA: University of Massachusetts, 2005: 12-20.
    [28] DIEDRICH L K, MANBY C L. Haemophilus species as a urinary tract pathogen[J]. Lab Med, 2017, 48(1): e1-e3. doi:  10.1093/labmed/lmw063
    [29] RIVAS A J, VENCES A, HUSMANN M, et al. The Photobacterium damselae subsp. damselae major virulence factors Dly, HlyApl and HlyAch are secreted via the type II secretion system[J]. Infect Immun, 2015, 83(4): 1246-1256. doi:  10.1128/IAI.02608-14
    [30] WEBSTER N S. Sponge disease: a global threat?[J]. Environ Microbiol, 2007, 9(6): 1363-1375. doi:  10.1111/j.1462-2920.2007.01303.x
    [31] WATRAL V, KENT M L. Pathogenesis of Mycobacterium spp. in zebrafish (Danio rerio) from research facilities[J]. Comp Biochem Physiol Part c Toxicol Pharmacol, 2007, 145(1): 55-60. doi:  10.1016/j.cbpc.2006.06.004
    [32] DALSGAARD I. Virulence mechanisms in Cytophaga psychrophila and other Cytophaga-like bacteria pathogenic for fish[J]. Ann Rev Fish Dis, 1993, 3: 127-144. doi:  10.1016/0959-8030(93)90032-7
    [33] STEVENS D A, HAMILTON J R, JOHNSON N, et al. Halomonas, a newly recognized human pathogen causing infections and contamination in a dialysis center three new species[J]. Medicine, 2009, 88(4): 244-249. doi:  10.1097/MD.0b013e3181aede29
    [34] FARKAS J. Filamentous Flavobacterium sp. isolated from fish with gill diseases in cold water[J]. Aquaculture, 1985, 44(1): 1-10. doi:  10.1016/0044-8486(85)90037-7
    [35] JOHNSON D I. Legionella spp[M]. New York: Springer International Publishing AG, 2018:279-287
    [36] MAUEL M J, SOTO E, MORALIS J A, et al. A Piscirickettsiosis-like syndrome in cultured nile tilapia in Latin America with Francisella spp. as the pathogenic agent[J]. J Aquat Anim Health, 2007, 19(1): 27-34. doi:  10.1577/H06-025.1
    [37] VALDIVIA-ARENAS M A. Bloodstream infections due to Micrococcus spp and intravenous epoprostenol[J]. Infect Cont Hosp Ep, 2009, 30(12): 1237-1237.
    [38] BOWMAN J P. The Genus, Psychrobacter[M]. New York: Springer, 2006: 920-930.
    [39] LIU S, JIANG Z, DENG Y, et al. Effects of nutrient loading on sediment bacterial and pathogen communities within seagrass meadows[J]. MicrobiologyOpen, 2018, 7(5): e00600. doi:  10.1002/mbo3.600
    [40] GHADERPOUR A, NASORI K N M, CHEW L L, et al. Detection of multiple potentially pathogenic bacteria in Matang mangrove estuaries, Malaysia[J]. Mar Pollut Bull, 2014, 83(1): 324-330. doi:  10.1016/j.marpolbul.2014.04.029
    [41] PERKINS T L, KATIE C, BAAS J H, et al. Sediment composition influences spatial variation in the abundance of human pathogen indicator bacteria within an estuarine environment[J]. PLoS One, 2014, 9(11): e112951. doi:  10.1371/journal.pone.0112951
    [42] AGAWIN N S R, DUARTE C M. Evidence of direct particle trapping by a tropical seagrass meadow[J]. Estuar Coast, 2002, 25(6): 1205-1209. doi:  10.1007/BF02692217
    [43] MAUGERI T L, CARBONE M, FERA M T, et al. Distribution of potentially pathogenic bacteria as free living and plankton associated in a marine coastal zone[J]. J Appl Microbiol, 2004, 97(2): 354-361. doi:  10.1111/j.1365-2672.2004.02303.x
    [44] BAFFONE W, PIANETTI A, BRUSCOLINI F, et al. Occurrence and expression of virulence-related properties of Vibrio species isolated from widely consumed seafood products[J]. Int J Food Microbiol, 2000, 54(1/2): 9-18.
    [45] JOANN M B, DAVID A T, BRANT W T. Seagrasses and eutrophication[J]. J Exp Mar Biol Ecol, 2007, 50(1/2): 46-72.
    [46] ALLISON L S, JESSICA K C W, SUSANNE E C. Regional-scale effects of eutrophication on ecosystem structure and services of seagrass beds[J]. Limnol Oceanogr, 2012, 57(5): 1389-1402. doi:  10.4319/lo.2012.57.5.1389
    [47] MICHAEL J S, JOHN C B, MAGGY M N, et al. Algae as reservoirs for coral pathogens[J]. PLoS One, 2013, 8(7): e69717. doi:  10.1371/journal.pone.0069717
    [48] EGIDIUS E. Vibriosis: pathogenicity and pathology. A review[J]. Aquaculture, 1987, 67(1/2): 15-28.
    [49] 杨青, 俞云松, 倪语星, 等. 2009年中国CHINET肠球菌属细菌耐药性监测[J]. 中国感染与化疗杂志, 2010, 10(6): 421-425.
    [50] FISHER K, PHILLIPS C. The ecology, epidemiology and virulence of Enterococcus[J]. Microbiology, 2009, 155(6): 1749-1757. doi:  10.1099/mic.0.026385-0
    [51] YASUYOSHI I K E. Pathogenicity of Enterococci[J]. Nihon Saikingaku Zasshi, 2017, 72(2): 189-211. doi:  10.3412/jsb.72.189
    [52] HSIEH J L, FRIES J S, NOBLE R T. Vibrio and phytoplankton dynamics during the summer of 2004 in a eutrophying estuary[J]. Ecol Appl, 2007, 17(5): S102-S109.
    [53] 吴建平, 蔡创华, 周毅频, 等. 大亚湾网箱养殖水体弧菌种类组成及变化[J]. 湛江海洋大学学报, 2006, 26(4): 46-52.
    [54] AUSTIN B. Vibrios as causal agents of zoonoses[J]. Vet Microbiol, 2010, 140(3/4): 310-317.
    [55] REILLY G D, REILLY C A, SMITH E G, et al. Vibrio alginolyticus-associated wound infection acquired in British waters, Guernsey, July 2011[J]. Euro Surveill, 2011, 16(42): 321-326.
    [56] LIU S, JIANG Z, ZHANG J, et al. Effect of nutrient enrichment on the source and composition of sediment organic carbon in tropical seagrass beds in the South China Sea[J]. Mar Pollut Bull, 2016, 110(1): 274-280. doi:  10.1016/j.marpolbul.2016.06.054
    [57] JOHNSON P T J, CARPENTER S R. Influence of eutrophication on disease in aquatic ecosystems: patterns, processes, and predictions. Infectious disease ecology: the effects of ecosystems on disease and of disease on ecosystems[M]. Princeton: Princeton University Press, 2010: 71-99.
    [58] SCHMIDT A L, WYSMYK J K C, CRAIG S. Regional-scale effects of eutrophication on ecosystem structure and services of seagrass beds[J]. Limnol Oceanogr, 2012, 57(5): 1389-1402. doi:  10.4319/lo.2012.57.5.1389
    [59] GACIA E, DUARTE C M, MARBÀ N, et al. Sediment deposition and production in SE-Asia seagrass meadows[J]. Estuar Coast Shelf S, 2003, 56(5/6): 909-919.
    [60] MARBÀ N, ARIAS-ORTIZ A, MASQUÉ P, et al. Impact of seagrass loss and subsequent revegetation on carbon sequestration and stocks[J]. J Ecol, 2015, 103(2): 296-302. doi:  10.1111/1365-2745.12370
  • [1] 刘广锋徐力文黄建荣王江勇许丹陆镜周世宁 . 杂色鲍养殖环境中致病性弧菌分布调查. 南方水产科学,
    [2] 杨莺莺李卓佳陈永青梁晓华杨铿 . 乳酸杆菌L1对致病弧菌的抑制作用. 南方水产科学,
    [3] 王瑞旋王江勇徐力文冯娟 . 军曹鱼养殖水体及其肠道弧菌的耐药性研究. 南方水产科学,
    [4] 粟丽朱长波陈素文 . 混养罗非鱼对凡纳滨对虾养殖围隔中悬浮颗粒物和弧菌数量的影响. 南方水产科学, doi: 10.3969/j.issn.2095-0780.2015.06.003
    [5] 姚小娟王元赵姝胡梦华房文红 . 三氯异氰脲酸和苯扎溴铵对海水养殖源弧菌的抑菌和杀菌效果. 南方水产科学, doi: 10.3969/j.issn.2095-0780.2015.01.005
    [6] 杨宝丽王瑞旋时少坤王江勇 . 鲍养殖环境中弧菌密度变化及其与环境因子的关系. 南方水产科学, doi: 10.3969/j.issn.2095-0780.2015.03.015
    [7] 胡晓娟李卓佳1曹煜成1杨莺莺1文国樑1袁翠霖罗亮 . 强天气干扰条件下粤西凡纳滨对虾养殖池塘细菌群落动态特征. 南方水产科学, doi: 10.3969/j.issn.2095-0780.2012.05.008
    [8] 马之明周发林黄建华叶乐江世贵 . 头孢氨苄对斑节对虾幼体发育及育苗水体细菌数量的影响. 南方水产科学,
    [9] 谢云丹冯娟刘婵邓益琴王江勇苏友禄 . 自然感染无乳链球菌罗非鱼的比较病理学及毒力基因谱分析. 南方水产科学, doi: 10.12131/20180185
    [10] 谢丽玲赵水灵余飞成凯陈博朱炎坤 . 黄连素对3种水产动物致病菌的抑制作用研究. 南方水产科学, doi: 10.3969/j.issn.2095-0780.2013.04.008
    [11] 何爱华张曦陶琳丽林秋叶 . 6种中草药对4种淡水鱼致病菌体外抑菌作用的研究. 南方水产科学, doi: 10.3969/j.issn.2095-0780.2011.02.012
    [12] 王瑞旋郭志勋冯娟林黑着李卓佳 . 中草药对海水动物致病菌体外抑制作用的初步研究. 南方水产科学, doi: 10.3969/j.issn.1673-2227.2009.06.004
    [13] 贝蕾苏友禄赵超徐力文刘广锋王雨郭志勋冯娟 . 哈维弧菌rbsB基因的克隆与表达. 南方水产科学, doi: 10.3969/j.issn.2095-0780.2018.02.010
    [14] 魏文娟赵姝王元周俊芳李新苍房文红 . 副溶血弧菌养殖对虾分离株耐药性及耐药基因分析. 南方水产科学, doi: 10.12131/20190165
    [15] 张亚秋邓益琴冯娟毛灿胡建美苏友禄 . 哈维弧菌vhh基因缺失株的构建及其相关生物学特性研究. 南方水产科学, doi: 10.12131/20190211
    [16] 曾祖聪曹建萌卢迈新可小丽刘志刚高风英朱华平 . 罗非鱼无乳链球菌LrrG-Sip融合基因原核表达载体的构建及表达. 南方水产科学, doi: 10.3969/j.issn.2095-0780.2014.05.003
    [17] 刘志刚可小丽卢迈新方伟王淼朱华平高风英曹建萌 . 罗非鱼无乳链球菌强毒株基因组表达文库的构建及鉴定. 南方水产科学, doi: 10.3969/j.issn.2095-0780.2015.06.005
    [18] 王瑞旋耿玉静冯娟王江勇 . 杂色鲍哈维弧菌耐药质粒的鉴定和分析. 南方水产科学, doi: 10.3969/j.issn.2095-0780.2012.02.001
    [19]  姜敬哲张微王江勇王瑞旋刘广锋 . 哈维氏弧菌感染的杂色鲍全组织均一化cDNA文库的构建. 南方水产科学, doi: 10.3969/j.issn.1673-2227.2010.05.006
    [20] 杨求华葛辉方旅平林琪何丽斌周宸 . 池塘养殖刺参病原菌塔式弧菌的分离与鉴定. 南方水产科学, doi: 10.3969/j.issn.2095-0780.2014.04.008
  • 加载中
计量
  • 文章访问数:  271
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-07
  • 录用日期:  2020-05-08

我国热带典型海草床潜在致病菌群落结构及其毒力基因丰度的空间特征

    作者简介:邓益琴 (1990—),女,博士,助理研究员,从事鱼类细菌病及防治技术研究。E-mail:yiqindd@126.com
    通讯作者: 冯娟, jannyfeng@163.com
  • 1. 中国水产科学研究院南海水产研究所/广东省渔业生态环境重点实验室/农业农村部南海渔业资源开发利用重点实验室,广东 广州 510300
  • 2. 中国科学院南海海洋研究所热带海洋生物资源与生态重点实验室,广东 广州 510301

摘要: 该研究利用16S rRNA扩增子测序技术分析了我国热带 (新村、黎安、潭门) 典型海草床水体潜在致病菌的群落结构,通过选择性培养基分析可培养弧菌和肠球菌的丰度,进一步利用定量PCR分析弧菌 (Vibrio) 和肠球菌 (Enterococcus) 典型毒力基因含量。结果发现,新村、黎安海草床水体潜在致病菌与潭门有显著差异;可培养弧菌和肠球菌及其典型毒力基因vhhtoxRaspAespgelE均呈现新村>黎安>潭门的趋势,而弧菌典型毒力基因ctxAtlhtrhvvp呈现黎安>新村>潭门的趋势。新村和黎安的较高人类活动强度如营养负荷,可能是导致其海草床致病菌和毒力基因丰度较高的重要原因,而新村和黎安的差异可能与不同的人类活动方式有关。

English Abstract

参考文献 (60)

返回顶部

目录

    /

    返回文章
    返回